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Abstract

In modern mechanical engineering and steelwork the use of cold-rolled steel sections is a 
standard method. These sections should be mechanically stable on the one hand and cost efficient on 
the other hand. To decide what profile suits for a certain case is a constrained optimization problem 
which is in general non convex, i.e. several local optima exist. 

To solve this non trivial problem we used genetic algorithms, search heuristics that mimic the 
process of natural evolution. For the specific application some additional problems had to be solved: 
First, an adaptive mutation control was implemented. Second, a mixed asexual and sexual reproduction 
was applied with an inbreed avoiding method based on the genetic distance of the individuals. Third, 
the restrictions were handled flexible, dependent on the mutation strength. This means that under 
the conditions of strong mutations (r-strategy), violations of the restrictions are allowed within some 
limits corresponding to reduced evolutionary pressure. Later on when approaching an optimum and 
the algorithm changes eventually to K-strategy, the restrictions become more severe corresponding 
to stabilising selection. 

The presented algorithm was tested on some cases; we found that significant improvement of cost 
efficiency was reached while mechanical stability was still granted. In comparison to hard restriction 
implementations like constant penalty functions or Lagrange-multipliers due to the flexible restrictions 
the algorithm tends significantly less to sustain in local optima. This approach could help to find cost 
efficient and light weight steel structures for mechanical engineering in the near future. 

case. Usually, the required mechanical parameters are calculated 
from the loads expected. Then either the cheapest profile from 
a palette of standard products is selected just fulfilling the 
mechanical requirements (including some safety-factor) or some 
experienced engineer uses inspiration and perspiration to design 
a profile where the material is “optimally” exploited. 

The optimization problem could be solved using a method 
from the field of nonlinear programming, where the problem is 
defined by a system of equalities and inequalities, collectively 
termed constraints, over a set of unknown real variables, along 
with an objective function to be maximized or minimized, where 
some of the constraints or the objective function are nonlinear 
[2].

Formally: Let n, m, and p be positive integers. Let X be a subset 
of ℝn, let f, gi, and hj be real-valued functions on X for each i in {1, 
…, m} and each j in {1, …, p}.

Introduction
To produce steel beams with high mechanical stability 

the method of choice is the cold-rolling process [1]. It not only 
allows a high range of geometric possibilities but also ensures 
a cost efficient production: High end manufacturing equipment 
is available to produce tubes and sections from steel sheets in 
a continuous process. Although the wall thickness is constant, 
this technique allows a wide variability in sections and tubes, the 
latter produced by welding the steel sheets’ ends together within 
the forming process [1].

Such a profile has to meet several requirements with respect 
to the mechanical load. Parameters like moments of inertia, 
moments of resistance, torque of inertia, buckling-stability, 
slenderness ratio and the radii of inertia have to be in a range 
suitable for the material to withstand the loads. Facing the 
countless possibilities for steel beam profiles it is not easy to 
find the optimal, tailor made profile for a certain application 
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A nonlinear minimization problem is an optimization 
problem of the form 
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Constrains (all the gi and hj) are typically handled using 
Lagrange-multipliers, penalty-functions, barrier-functions, 
combinations of the former or methods eliminating degrees 
of freedom if the problem allows this [2,3]. All these methods 
transform the constrained to an unconstrained optimization 
problem. 

Standard optimization algorithms can hardly be applied in our 
case of cold rolled steel profiles if a full topography optimization 
is required. This is because the problem is highly non convex, 
i.e. there are several local optima. Furthermore it is a restricted 
optimization, i.e. there are “solutions” which are not allowed for 
example due to mechanical limitations. Constrained optimization 
however is not easily implemented in standard optimization 
methods like downhill-simplex, gradient-search, quasi-Newton 
methods, secant method or Newton methods and makes these 
algorithms even more vulnerable to local optima [2,3]. Global 
optimization for non-convex problems is a big problem and 
there is no method that guarantees success. Besides great deluge 
algorithm, simulated annealing, Metropolis algorithm, threshold 
acceptance, hill climbing, ant algorithm, stochastic tunneling and 
RANSAC-algorithm the most promising and wide used approach 
is that of the genetic algorithm or evolutionary algorithm. 

A genetic algorithm is a search heuristic that mimics the 
process of natural evolution [4-7]. This heuristics can be used to 
generate useful solutions to optimization and search problems. 
In a genetic algorithm, a population of individuals (candidate 
solutions) is evolved toward better solutions with respect to a 
fitness function. Each candidate solution has a set of parameters 
(its chromosomes or genome) fully describing the solution, 
which can be mutated and altered by recombination due to 
sexual reproduction. The genome of an individual is represented 
by a vector. Each entry constitutes one parameter [4-7].

A genetic algorithm basically works according to the following 
pseudocode:

Generate the initial population of individuals of size N

Evaluate the fitness of each individual in that population

While termination condition not fulfilled

Select M individuals (M<N) as parents based on their fitness 
for reproduction

Generate offspring individuals by reproduction from parents 

Mutate new individuals

Evaluate the individual fitness of offspring individuals

Replace least-fit subpopulation with new individuals to 
maintain population size N 

End

Even though this approach is rather simple, it has proven 
its ability to solve difficult optimization problems in structural 
engineering in the past [4-12]. Not surprisingly, attempts to 
optimize cold formed steel profiles were made: Lu and Makelainen 
[13-15] and Lee et al. [16,17], used genetic algorithms to optimize 
dimensions of specific cold-formed steel profiles like hat, C and Σ 
profiles. Griffiths and Miles [18], used genetic algorithms where 
a voxel-based representation in which the design space was 
decomposed into a grid of identical sized squares. Cross-over 
and mutation operators were not applied to the genotype strings 
but to the design space, allowing evolution and convergence to 
known optimum I and box profiles. Gilbert et al. [19], showed - 
very comprehensive - that direct shape optimization is possible.

As mentioned above, the genetic algorithm is in principle a 
very simple and powerful method to optimize cold-formed steel 
profiles; however, there is one major difficulty: How to overcome 
local optima? The optimization of profiles is a non-convex 
problem, thus several optima occur. It has to be avoided that 
the algorithm gets stuck in one of these during the optimization 
process. All former mentioned studies faced this problem by 
restricting the search in the high dimensional search-space using 
different tricks. 

The problem of avoiding local optima can be mainly broken 
up to three main issues that have to be overcome in order to 
effectively apply genetic algorithms to our problem of steel beam 
profile optimization effectively:

1. Mutation strength: How strong should the variation of the 
individuals in one generation be? Is K-strategy (slow but 
precise progress) or r-strategy (fast but crude progress) 
better?

2. Mating partner selection: How important is sexual 
reproduction and how can mating partners be selected in 
order to avoid inbreed?

3. Implementation of restrictions: How can mechanical and 
geometrical restrictions be implemented?

The first point can be addressed using the ‘rule of fifth’ 
originally developed by Rechenberg [6]. He demonstrated how 
the evolution process can be improved by adapting the mutation 
strength over time and depending on the improvement rates 
the current strength achieves. The rule states that the mutation 
strength should be increased if more than a fifth of all mutations 
are improvements to avoid getting stuck in a local maximum. 
Consequently the mutation strength should be decreased if less 
than a fifth of all mutations are improvements. The second point 
has been shown to be of significant importance by Affenzeller 
et al. [20], who described how the diversity in a population 
can be analyzed. They gave some insight into the importance 
of a diverse population for the success of the algorithm and 
additionally highlighted the importance of the selection, 
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specifically the mate selection for the generation of offspring. 
Huang [21] shared his work and success with a mate selection 
modelled after the immune system. This makes it possible to 
maintain different subpopulations which increase the diversity. 
However, this comes at the cost of the success rate for mating 
and general convergence speed. As more dissimilar individuals 
mate, the likelihood to obtain non-viable offspring is increased. 
For the final issue raised, the standard solution would be the 
use of Lagrange multipliers [22] or a formulation of Kuhn-
Tucker conditions [3]. For genetic algorithms, though, no perfect 
general solutions or approaches were found in the literature. We 
discovered that Lagrange multipliers or other standard penalty 
functions tend to make the algorithms very sensitive to local 
optima. That is why we decided to turn our own attention to it. In 
this article we make deliberate use of our concept of conserved 
segments in genetic algorithms to consider limitations during the 
optimization process.

Methods and Theory
Data representation and reproduction

A profile produced by tin profiling can be represented in 
different ways. We found, similar to [19], that for a finite number 
of local bends the x- and y- coordinates of all bends, i.e. of all 
corners are the most convenient and well scaled representations 
of a profile. Thus the vector g  of all genes is given by

( )1
T

2 n 1 2 ng = x = x ,x , ,x , y , y , , y
y

 
 
 

 
 



                                        (1)

With x  representing the vector of all x-coordinates and y  
being the vector of all y-coordinates of the bends 1..n. Between 
the bends the tin is flat. Each individual, i.e. each profile under 
investigation can be represented by such a vector referred 
to as genome. Alternative representations like the angles of 
deformations were found to yield less numerical stability as 
small changes in the first bends can lead to rather large changes 
in the later bends and thus the scaling of the genes is not uniform 
or the genes are not independent.

For the reproduction, one has to decide if asexual or 
sexual reproduction is applied. In the simple case of asexual 
reproduction an individual is selected for reproduction and 
a copy of the genome is taken and subjected to mutation (see 
below) for the next generation.

In the case of sexual reproduction two individuals have to 
be selected. This selection process is described below. If two 
individuals, represented by their genomes

( )1
T

2 2ng = g ,g , ,g
  And  ( )1

T
2 2nh = h ,h , ,h

                                        (2)

were selected, in our case of continuous parameters two 
methods for recombining the genetic information were tested.

-Intermediate recombination

The genes (lines in the vectors) of the child-individual c  are 
simply the averages of the corresponding genes of the parents.
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-m-point cross over

For this method m equally distributed random integer 
numbers 1<zi<2n with i=1..m are selected on the parent genomes. 
Everything between odd and even points zi is swapped between 
the parent organisms leading to two children. The number 
of recombination points m can be set to a fixed number like 1 
or 2 (which were found to be convenient) or can be generated 
randomly.

These reproduction processes are repeated to obtain the 
demanded number of individuals for the next generation. The so 
produced children are then subjected to mutations.

Mutation
The mutation of an individual i, i.e. a profile represented by 

ig can be constructed by adding a vector of normal distributed 
values of the corresponding size to ig as
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so the 2n values of Ni are normal distributed random 
numbers with mean 0 and standard deviation 1. In our approach 
all individuals of the offspring were mutated according to Eq. 
4. The values si which can be 0 or 1 represent the protection of 
the end coordinates; if for example the x-coordinate of a bend j 
must not be changed due to constructive demands, sj is 0. If the 
y-coordinate of the bend number j must be protected, the sn+j is 
also 0. The value µ is the mutation strength which was found to be 
a rather critical parameter. If µ is large, the initial improvement of 
the fitness is fast and it is very likely to overcome local optima of 
the fitness function. However, a precise optimization close to the 
optimum is hardly possible. If on the other hand µ is small, a very 
fine search for the optimum is possible, however, the progress is 
slow and even more critical, and the algorithm can get stuck in 
a local optimum. Thus the mutation strength µ must be adapted 
continuously during the application of the algorithm. Therefore 
we applied the 1/5-method established by Rechenberg [6]. If 
the number of individuals in the generation t+1 that have higher 
fitness than their parents is significantly higher than 1/5th of 
the total number of individuals in this generation, the mutation 
rate is increased by a factor of 10. If on the other hand the better 
individuals are below 1/5th of the total number, the mutation 
strength is reduced by a factor of 3. These values were empirically 
obtained to yield good results. 

Fitness
The fitness has to depend on the weight per unit length, which 
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is proportional to the cross section area of the steel sheet when 
the material is given. Thus the first idea for the fitness F would be

1F =
A

                       (5)

with A being the cross-sectional area. However, demands 
concerning mechanical stability and geometric restrictions 
have to be fulfilled. To assure mechanical stability calculations 
for beams on two supports according to the DIN EN 1993 
(Eurocode 3) were established. For our purpose the forces and 
momenta were calculated. Then for given restrictions concerning 
deformations and carrying capacity, parameters of the profile 
like moments of inertia, the moments of resistance, torque of 
inertia, buckling-stability, slenderness ratio and radii of inertia 
were calculated for each profile under consideration. If the 
stability criteria are not met by the profile under consideration, 
the fitness has to be reduced by a penalty function. We found that 
a throughout strict penalty function, i.e.

F=1/A if stability is granted and                                     (6)

F=0 otherwise                     

to be misleading as the optimization algorithm exhibits a 
tendency to get stuck in a local optimum. To avoid this, we found 
the following method. Dependent on the state of the evolutionary 
optimization violations of the stability criteria are allowed. Initially 
when a large mutation strength µ is given, stronger violations of 
the stability criteria are tolerated, when fine tuning of the profile, 
i.e. when the mutation strength is small, the tolerated violations 
are turned to zero. For example with respect to allowed bending 
deformations the area moment of inertia around the x-axis Ix is 
calculated and compared to the minimal area moment of inertia 
Ix,min. Then a weighting factor hIX is calculated 

1, exp x x,min
IX

x,min

I I
h = min V

Iì

  − ⋅  
⋅    

                                   (7)

with V being a steepness factor. A value of V equal one over 
ten times the number of variable entries in the genome was found 
empirically to be well suited. However, this factor might need 
individual adaptation by the operator to yield good results. Other 
functions were also tested and found to be in principle suited for 
calculation of the weighting factor like the logistic function or 
other sigmoidal functions. In the end it must be a function that is 
1 if the stability criteria is fulfilled and which decrease towards 
0 in the case of violations of these criteria. The decrease due to 
the violation must become stronger with decreasing mutation 
strength so that for µ-> 0 the weighting function becomes the 
Heaviside function at the stability limit.

2

1

n

iV = s∑                                                (8)

The factor hIX is 1 if the area moment of inertia is high enough 
and decreases linearly with slope V µ⋅  until zero if Ix is smaller 
than Ix,min. The fitness-function F is then calculated as

1
i

i
F = h

A
⋅∏                                     (9)

with hi denoting all weighting factors for all the mechanical 

parameters mentioned above. One important aspect is that the 
corrected fitness has to be calculated for the best individual in 
each generation as the correction factor could have been changed.

Selection
For the different algorithms tested different selection 

strategies were used. The first and most simple algorithm was 
an ES (200+1) (ES for evolutionary strategy) [6], but with the 
above described modified fitness function. This means that in 
each generation 200 children are generated asexually from one 
parental individual. From all 200 children plus the parental 
individual the best (fittest) individual is selected as parental 
individual for the next generation.

Alternatively a roulette decision was used for the selection of 
10 individuals out of 30 individuals from the current generation 
[21,23,24]. The selection was done by setting the selection 
probability p(i) of the ith individual to be proportional to the 
fitness of this individual

( ) i

j
j

Fp i =
F∑

                                                              (10)

Then the 10 individuals were selected using a roulette 
decision based on uniformly distributed random numbers.

For normal sexual reproduction i.e. for applying 
recombination simply pairs of the selected 10 individuals were 
chosen.

In an alternative approach a special roulette-decision was 
made in order to get individuals with high fitness but also to 
avoid inbreed, which is the recombination of closely related (i.e. 
similar) individuals [21]. For this an individual g  is chosen either 
by normal roulette decision which means with probabilities 
proportional to the fitness or as the individual with the highest 
fitness. Then for the remaining individuals ih  a modified fitness 
is calculated from the initial fitness and the genetic distance of ih  
and g  according to

( ) ( ) ( )1 v
D i i min iF h = F h A dist g,h−   − ⋅   
  

                                        (11)

with the genetic distance 

( ) i
i

g h
dist g,h =

g

− 


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

                                                        (12)

Thus if g  and ih are similar (closely related) the fitness is 
reduced. In the above formula v denotes a weighting factor for 
the influence of the distance onto the modified fitness. Typically 
v=2 was found very reasonable. Based on this modified fitness 
function a partner for g  is chosen out of the ih and children 
individuals are created according to the recombination rules 
defined above. This approach avoids that only similar individuals 
which of course have rather similar fitness values are recombined 
as this does not improve genetic variability. Thus if an individual 
is sufficiently good and really different from the initially chosen 
individual which has most likely a very high fitness, the modified 
fitness is high and the children are likely to exhibit new properties. 
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This increases the genetic variation in the next generation.

Implementation 
All algorithms were implemented in the numeric software 

environment Octave version 3.8.1 including the parallel 
computation package running on a 6-core PC using the Linux-
Distribution XUubuntu 14.10 as operating system. As an isolation 
strategy was used (see below), different populations were 
allowed to evolve independently for some time before comparing 
to the other populations. This yielded a simple parallelisation. 
Using the pararrayfun-command from the parallel-computation 
package the 64 populations were started on the cores available 
on the computer. This resulted in a speed up of a factor 4.2 in 
comparison to simple sequential computation.

The mechanics of the restrictions used according to the DIN 
EN 1993 (Eurocode 3) are shown in Appendix A. The principle 
of the algorithm is shown as Octave-inspired pseudocode in 
Appendix B.

Results
Comparison of asexual and sexual reproduction

First the different reproduction methods were compared 
with respect to convergence and run time. Therefore some 
simple test cases were optimized, always trying to minimise 
weight but maintain mechanical stability as restriction. A typical 
result is shown in Figure 1. As initial profile a hollow rectangle 
10 x 15cm with wall thickness of 1.75mm was chosen. For 
constructive reasons a 90° angle is assumed to be needed at the 
origin. No prominences below 0 in x- and y-direction are allowed. 
A closed profile is required exhibiting at least the area moments 
of inertia of the rectangular profile (Ix=165cm⁴ and Iy=299cm⁴). 
Furthermore the section modulus of torsion has to be above 
Itmin=315cm³; the section muduli have to be above Wzmin=25 cm³ 
and Wymin=33cm³ respectively; the radii of inertia are demanded 

to be above rtymin=18cm and rtzmin=34cm in order to avoid euler-
bending and buckling. The number of allowed bends was 9 set by 
12 bends with 3 protected coordinates.

0,0,0,0,3,7,10,10,10,10,10,7,5,0,0,
10,12,15,15,15,15,9,4,0,0,0,0,0

T

initg =  
 
 



and the vector s~  of the protection values si is

0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0

T

s =  
 
 



Rendering the coordinated (0,0), (0,10) and (5,0) protected. As 
the profile is closed the last entry in x and y is identical to the first 
entry which is (0,0). An optimized result in comparison to the initial 
rectangular profile is shown in Figure 1. Obviously the 90°-angle 
at (0,0) is maintained and the rest of the profile was evolved to 
a rather elliptic shape. Of course due to the limited number of 
allowed bends the elliptic form is only approximated. Different 
results for the coordinates (all localised on the ellipse) exist 
with approximately the identical fitness. This optimized profile 
yields a mass reduction of 4.97% compared to the rectangular 
profile. The development of the fitness function in dependence 
on the generation number is depicted in Figure 2 for different 
algorithms. First the simple asexual reproduction was employed 
(solid line). Then simple sexual reproduction with intermediate 
recombination was used (dashed line) where all individuals of 
the offspring were produced by sexual reproduction. Finally the 
inbreeding avoiding sexual reproduction (dash-dotted line) with 
2-point cross over was applied; again all individuals were the 
result of sexual reproduction. Clearly the sexual reproduction is 
slightly faster with respect to the number of generations needed. 
Interestingly the inbreeding avoiding algorithm is extremely fast 
in the beginning but slows down in comparison to the simple 
sexual reproduction. If simple m-point cross over or inbreeding 
avoiding with intermediate recombination were applied the 
results were very similar (data not shown). Generally sexual 
reproduction and concomitant crossover of the chromosomes 
improves the useful genetic variability especially for complex 
organisms. In the field of genetic algorithms it is well established 
that crossover normally speeds up the convergence with respect 
to the number of generations and helps to avoid local optima. 
In contrast to other optimization problems the advantages of 
the sexual reproduction are rather small in our case of profile 
optimization with respect to the number of generations needed. 
This was found for virtually all test examples we investigated 
(not shown). As the computational effort for each generation 
is significantly higher in the case of sexual in comparison to 
the asexual reproduction, the runtime would even increase 
significantly when sexual reproduction is allowed.

The effect of adjustable penalty function
The difference of a strict penalty function (Eq. 6) and our 

flexible penalty (Eq. 7) which tolerates violations of the restricting 
conditions dependent on the mutation strength is exemplified in 
Figure 3. A profile for a guiding rail was taken. The profile has to 
fulfil the following conditions: The area moments of inertia have 

Figure 1: Comparison of a hollow rectangle 15 x 10cm and wall thickness 
of 1.75mm (dashed line) and the optimized profile (solid line). A 90° angle is 
assumed to be needed at the origin and no prominences below 0 in x- and 
y-direction are allowed. A closed profile is required exhibiting at least the 
area moments of inertia of the rectangular profile are required with additional 
restrictions (see text). The optimized profile is approximately 5% lighter than 
the rectangular profile.
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to be above Iymin=25cm⁴ and Izmin=94cm⁴; the section modulus 
of torsion has to be above Itmin=0.008cm³; the section moduli 
have to be above Wzmin=19cm³ and Wymin=20cm³ respectively. 
Most important the radii of inertia are demanded to be above 
rtymin=11cm and rtzmin=11cm in order to avoid Euler-bending and 
buckling. Geometric restrictions were also given: For bolting the 

guiding rail a vertical section at x=0 from y=2 to y=-2 has to be 
given and no parts of the profile may reach below x=0 to make 
bolting possible. Furthermore the width was restricted to 10cm. 
Now a B-profile (or Σ−profile) was chosen which fulfilled these 
restrictions best. This is shown in Figure 3A. If this profile is 
then subjected to an evolution algorithm with the strict penalty 
function (Eq. 6) which does not allow any violation of the above 
condition, the optimization stops at a hardly improved profile. A 
typical example is shown in Figure 3B. The reduction of mass was 
below 1%. This was found in 50 test runs. If however the flexible 
penalty function (Eq. 7) was used, the optimization could jump 
out of the local optimum and reach fundamentally new results. 
One example is shown in Figure 3C yielding a mass reduction 
of about 23%. To make the production feasible and to reduce 
problems with local buckling, of course the human designer will 
further improve the profile to demands, which cannot easily be 
implemented. The result is shown in Figure 3D. This profile can 
be cold-formed with reasonable effort and can be bolted easily 
while still fulfilling the mechanical demands. However, a mass 
reduction of still about 20% is achieved in comparison to the 
initial profile. Without the flexible penalty the initial profile could 
not evolve to the found optimized profile or a similar one in more 
than 100 test runs we performed.

An algorithm inspired by parthenogenetic animals
Sexual recombination, especially with inbreeding avoidance, 

has the advantage that the algorithm often does not stagnate 
in a local optimum [4,21,23,24], but continues to a better or 
even global optimum. To combine the fast convergence of the 
asexual and the better performance with respect to local optima 
of inbreeding avoiding recombination, we implemented an 
algorithm inspired by animals with facultative parthenogenesis. 
Different scorpions, bugs, mints or insects like the stick insect 
Carausius morosus can reproduce themselves in two different 
ways [25]. As there are much more female animals than male 
individuals, the female can reproduce asexually by producing 
non inseminated eggs. These animals develop normally as a clone 
of the mother but of course are subject to mutations. If, however, 
a male is present, sexual reproduction including recombination 
can take place. This combines the rapid and simple proliferation 
of asexual reproduction and the higher variability of sexual 
reproduction.

Initially an isolation strategy was used, meaning different 
populations (typically 64) were allowed to evolve independently 
and after the evolution was found to stagnate for all populations 
(mutation strength µ<10-6), the found optima were taken. One 
calculation is exemplified in Figure 4. The fittest individual of 
all 64 individuals had a fitness of 0.1477. This individual was 
selected for sexual reproduction. The mating partner has to be 
determined using the fitness corrected by the genetic distance 
to the first chosen individual. The finesses for the remaining 63 
individuals are shown in Figure 4A. The genetic distances of the 
individuals to the initially chosen individual in our example are 
shown in Figure 4B. The modified fitness, i.e. the normalized 
fitness multiplied by the distance squared is shown in Figure 4C. 

Figure 2: Comparison of the development of the fitness of the best individual in 
dependence on the generation number for different recombination algorithms. 
The simple asexual reproduction (solid line), simple sexual reproduction with 
intermediate recombination (dashed line) and the inbreeding avoiding sexual 
reproduction (dash-dotted line) with 2-point cross over were applied to the 
same simple optimization problem (see Figure 1). The sexual reproduction 
were found to be slightly faster. The inbreeding avoiding algorithm is 
extremely fast in the beginning but slows down in comparison to the simple 
sexual reproduction.

Figure 3: Comparison of the optimization results for a guiding rail with 
fixed and flexible penalty function. The initial B-profile (or Σ−profile) (A) was 
subjected to optimization with fixed restrictions concerning moment of inertia, 
radii of inertia and geometric restrictions (see text). Only a slight improvement 
of about 1% was found (B). If however the flexible penalty function was 
used, a further improvement with temporal violations of the restrictions can 
be observed allowing a knock over of the upper and lower girder leading to 
the profile in (C) with 23% mass reduction. This profile can be the basis for 
constructing a reasonable profile which can be fabricated and still exhibiting 
a mass reduction of about 20% (D).
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Three individuals are marked A, B and C respectively to make the 
effect clear. Individual A has a high distance (no close relative) 
but a rather small fitness resulting in a low corrected fitness 
yielding it unlikely to be chosen for reproduction. Individual B 
has a high fitness (in fact the second best fitness in our example) 
but a small distance. This means that it is very similar to the 
initial individual and its genome carries hardly new information. 

The modified fitness is consequently small, rendering individual 
B not appropriate for reproduction. Individual C however has a 
high fitness and a high distance and is an excellent mating partner 
for the fittest individual of the population. 

These “optimal” individuals were allowed to reproduce 
sexually with the inbreeding avoiding method yielding again 
64 individuals. These recombined individuals were again 
allowed to evolve asexually. We typically found that repetition 
of this procedure yielded no further improvement in all cases 
tested, thus one sexual reproduction step was used only. A 
representative curve of the development of the best fitness in 
each generation is depicted in Figure 5. It has to be emphasized 
that the uncorrected fitness, i.e. 1/A is plotted here. Initially, 
when strong mutation takes place, profiles with very small A can 
occur (4th generation) which violate our restrictions. Due to the 
adjustable penalty function this is tolerated. After generation 
30 hardly any improvement occurs. However, after the sexual 
recombination at generation 56 a new profile is found allowing 
further improvement to the final fitness level. Due to the initially 
occurring strong mutations, violations of the restrictions are 
tolerated, leading to the apparent high fitness at generation 58. 
The whole calculation of this example took about 3 minutes using 
the implementation described above. This is an example for the 
optimization of an existing warehouse rack profile. The results 
are depicted in Figure 6. 

Discussion
Cold-formed steel profiles are produced by bending a thin 

steel sheet at ambient temperature to a desired shape [1,26]. 
This yields an efficient and fast way to produce members that 
are commonly used in applications such as steel storage racks, 
roof and wall systems, composite concrete and steel slabs, or 
automotive parts [26-31]. In cold-formed steel profiles could 
exhibit an enormous flexibility of cross-sectional shapes due to 
the manufacturing process allowing the achievement of almost 
any desired cross-section. The cross-sectional shape is the key 
element in enhancing the properties of the steel profile. However, 
research on optimization of cold-formed steel profiles has been 

Figure 4: Fitness, genetic distance and modified fitness of the best individuals 
from 64 populations. Here 64 different populations were allowed to evolve 
independently. The fittest individual of all 64 individuals had a fitness of 
0.1477. This individual was selected for sexual reproduction. The remaining 
63 mating partners exhibited the fitnesses depicted in (A) and the genetic 
distances to the optimal individual depicted in (B). The modified fitness, i.e. 
the normalised fitness multiplied by the distance squared is shown in figure 
4C. Three individuals are marked A, B and C respectively to make the effects 
of distance and fitness clear (see text).

Figure 5: Development of the fitness (1/A) of the best individual in dependence 
on the generation number for facultative sexual reproduction and inbreeding 
avoidance. In Generation 56 the sexual reproduction depicted in Figure 4 
takes place. Due to this newly found profile further improvement by asexual 
reproduction was made possible.

Figure 6: Initial profile and evolved profile of a warehouse rack and the 
offcuts. Both profiles were made out of identical tin sheets. The initial (original) 
profile, a so called - profile is shown left and the clippings (offcut) underneath. 
The optimized profile is on the right side. The offcut is considerably larger. 
Over all 10% of material could be saved when using the evolved profile. All 
mechanical constrains are fulfilled.
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restricted mainly to the conventional C, Z or Σ cross-sectional 
shapes where only the dimension variables of the existing cross-
sections were optimized [29,30]. Therefore innovations were 
rather limited.

In principle for general structural (topological) optimization 
genetic algorithms appear to be well suited [32-37]. This is 
true also for highly restricted problems [33,34], or even for the 
surveyance of structures [38]. However, due to the multiple 
optima in the problem of cold-formed steel section optimization 
the attempts were not too successful in the past. 

Here we show that the combination of several improvements 
of the simple genetic algorithm can yield good results for a 
general shape optimization of steel profiles. 

Choosing an adjustable penalty function over a hard cut-
off value significantly increased the chance of finding fitter 
individuals. With a flexible penalty function the improvements 
surpassed the strict functions best result by more than 20%. It 
is assumed that while there are several local maxima available in 
the fitness landscape, they are separated by vast areas in which 
the stability criteria are not fulfilled. Those areas cannot be 
crossed if each and every individual representing a step through 
it is considered non-viable by the strict function. The adjustable 
penalty function permits the crossing between areas of the fitness 
landscape yielding viable individuals during the early stages of 
the evolutionary process. By reducing the permissiveness over 
the generations later generations will still focus on Optimizing 
individuals within the local maximum, thereby still taking full 
advantage of the strength of a strict cut-off function.

The example presented showcases the usefulness of such 
adjustable penalty functions when facing an optimization 
problem in which viable options are scattered across the fitness 
landscape. Simpler problems probably won’t gain anything if the 
entire fitness landscape yields viable individuals. The algorithm, 
throughout the tests, generated a variety of profiles that are, at 
least according to the numbers, very interesting. Before going into 
production, they should of course be investigated by engineers 
for mainly two reasons. First, the calculation of the stability 
criteria is a simplification that in fringe cases might not be an 
exact representation of the actual physical conditions. Second, 
while some profiles might fit the stability criteria and have 
significantly lower material requirements for production, it does 
not necessarily mean, that they can actually be easily produced. 
Therefore engineers must not only check the calculations for 
potential profiles, but also have to consider the feasibility of the 
production process.

In nature not only mutation, but, due to sexual reproduction, 
also recombination alters a populations gene pool and therefore 
contributes to evolution. Because recombination of the fittest 
individuals can have a high impact on evolutionary progress, this 
mechanism is often adopted in genetic algorithms. The problem 
occurring here is, that the fittest individuals will often be close 
relatives, so that recombination will lead to almost no progress 
in this case. To yield optimal progress, inbreed must be avoided.

While nature has several mechanisms to prevent inbreeding, 
most standard genetic algorithms neglect the problem of inbreed 
which reduces genetic variation. In some advanced genetic 
algorithms the Westermarck effect (reverse sexual imprinting) 
[39], is used to reduce the problem. This is a psychological effect 
through which individuals who are raised in close proximity 
during childhood become desensitized to later sexual attraction. 
Alternatively selection schemes [20,24] can be applied.

In nature there are even other inbreeding avoiding 
mechanisms that also maintain overall diversity within the 
population. For example one can be found in wild guppy 
populations and is called negative frequency-dependent 
selection (NFDS) [40]. This strategy is characterized by a female 
preference of rare male phenotypes, which substantially raises 
the probability, that the mating partner is no close relative. 
In the case of the guppy (Poecilia reticulata, Peters, 1859) the 
reproduction-fitness is strongly influenced by the rarity of male 
phenotype. However, rare does not necessarily mean good.

In other species like mice (Mus musculus, Linnaeus, 1758) 
direct information about an individual’s genome, and therefore 
its actual genetic distance, is encoded through peptides in the 
urine and can be assessed by the olfactory system for inbreeding 
avoidance [41].

Based on the later, we found an alternative approach for 
the implementation of our algorithm more fruitful. As it focuses 
only on the genetic distance and not on the “family history”, it 
is easy to implement and rather fast. Furthermore we combined 
the advantages of asexual (fast) and sexual (good diversity) 
reproduction like some living beings do in nature. Pure sexual 
reproduction was found to be slow due to the elaborate and time 
consuming search for a mating partner. However, the genetic 
variability is improved by sexual reproduction in populations 
with high diversity when inbreed is avoided. To get the best of 
both, we switched between asexual and sexual reproduction 
which yielded fast convergence and good genetic diversity.

Taken together, we found a biomimetic approach to optimize 
cold-rolled steel beam profiles in order to exploit the material 
almost ideal for obtaining cost efficient and producible sections 
that can bear the specified mechanical load. The restrictions of 
the mechanical stability are formulated in such a general way that 
they can be easily extended. For example a finite element (FEM) 
simulation could also be performed and the von Mises stress and 
the local deformations could be used as constrains. The values 
from the FEM can be compared to the allowed values and the 
weighting factors hi for the calculation of the corrected fitness 
function can be obtained. Thus the algorithm described could 
help saving resources and energy as well as costs in mechanical 
engineering and structural steel work in the future. 

Conclusion
Summarising our work, we were able to implement an 

optimization algorithm to a highly nonconvex problem based on 
evolutionary algorithms. We introduced a simple and efficient 
solution where standard optimization algorithms can hardly be 
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applied. We have established a new adjustable penalty function 
to calculate the fitness. This new function surpasses the standard 
penalty function by more than 20 percent. Furthermore, we 
found a simple solution to combine the fast convergence of the 
asexual recombination and the high performance with respect 
to local optima of inbreeding avoiding sexual recombination, 
i.e. we used an algorithm inspired by animals with facultative 
parthenogenesis.
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Appendix A

Mechanical constrains

Moments

The area moment of inertia with respect to the center of 
gravity around the x- and y-axis can be calculated in general as

2 2
y x

A A
I = x dA I = y dA∫ ∫              (13)

And the centrifugal momentum is given as

xy
A

I = x ydA⋅∫                 (14)

Now for a rectangular profile like the streight walls of our 
profiles the moments around the main inertia axis and with 
respect to the center of gravity of the individual walls i are given 
by

3 3
0

12 12
i i

çi î i çî i
l w l wI = I = I =⋅ ⋅               (15)

with li denoting the length of wall i and w is the thickness of 

the tin. In order to calculate the moments around the main axis 
(through the area center of gravity) of our profile the individual 
walls have to be rotated and translocated. This is done in two 
steps. First a rotation by the angle ϕi (angle between main axis of 
profile and wall) is carried out according to

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 sin 2
2 2
1 1 sin 2
2 2

1 sin 2
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xi i i i i i i i
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I = I I I I + I
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η ξ ηξ

− ⋅ ⋅
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− − ⋅ ⋅

cos

cos

cos I

               (16)

Here x and y denote the correctly rotated but still translated 

axis.  Then the translation to the center of gravity by the distances 

∆xi and ∆xi can be carried out as

2
xi xi

2
yi yi

xyi xyi

I = I + y A

I = I + x A

I = I + x y A

∆

∆

∆ ∆

⋅

⋅

⋅ ⋅

               (17)

With A denoting the area of wall i which is li times w.

The section modulus (modulus of resistance) can be 
calculated by dividing the corresponding moment of inertia by 
the maximal distance of the profile from the center of gravity:

( ) ( )
yx

x y
max max

IIW = W =
y x

              (18)

Euler buckling
For Euler-buckling stability the slenderness of the profile is 

calculated according to
L=

i
βλ ⋅                 (19)

with b being the buckling parameter which is 1 in the case of a 
lever jointed on both sides. L describes the length of the lever and 
i is the radius of inertia which can be calculated as

Ii =
A

                 (20)

The Euler buckling tension is then calculated as
2

2E
E= πσ

λ
⋅                    (21)

which is then compared to the actual normal stress in the 
profile.`

Local Buckling
For determining the critical buckling stress the buckling 

stress for each flat segment of the profile (flat part between 
two bends) has to be calculated. If the profile is open, the end-
segments with only one connection to a neighboring segment 
have a critical buckling stress as

2

0.45ci
i

w= E
b

σ
 

⋅ ⋅  
 

                (22)
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with bi being the width of the ith-segment, E the youngs 
modulus and w the width of the tin. For all other segments 
(connected on both sides to neighboring segments)  one obtains

2

3.62ci
i

w= E
b

σ
 

⋅ ⋅  
 

                (23)

The critical buckling stress of the whole profile is then 
calculated according to

i ci
i

c
i

i

b w
=

b w

σ
σ

⋅

⋅

∑

∑
                (24)

which is then compared to the actual stress in the profile.

Appendix B
Pseudocode of the developed algorithm

Function c=profilevo(c,nodsav,xlim,ylim,boundc)

Check reasonability of input  

Sigma=.02;  % mutation strength

Calculate area Amin of initial individuals;

While sigma>1e-5

    For i=1: offspring number

      ccange=randn(size(c)) * sigma;

      cnew=c + nodsav .* ccange;

      Limit coordinates to xlim and ylim

      Calculate A of cnew;

      Calculate h using sigma from boundary conditions boundc 
according to Eq. 7;  Calculate F according to Eq. 9

      if F<Amin 

         Amin=A;

          c=cnew;

      end

    end

  if percentage of improved offspring individuals >25

    sigma=sigma/2;

  elseif percentage of improved offspring individuals <15%

    sigma=sigma*10;

  end 

end
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