
007

Citation: D’Amore L. A Model Decomposition-in-Time of Recurrent Neural Networks: A Feasibility Analysis. Trends Comput Sci Inf Technol. 2025;10(1):007-010.
Available from: https://dx.doi.org/10.17352/tcsit.000091

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Abstract

In the context of Recurrent Neural Networks, minimization of the Loss Function (LF) causes the most training
overhead. Following the Parallel In-Time approaches, we introduce an ab-initio decomposition across time
direction. The key point of our approach lies in the innovative defi nition of local objective functions which allows
us to overcome the sequential nature of the network and the management of dependencies between time steps.
In particular, we defi ne local RNNs by adding a suitable overlapping operator to the local objective functions
which guarantees their matching between adjacent subsequences. In this way, we get to a fully parallelizable
decomposition of the RNN whose implementation avoids global synchronizations or pipelining. Nearest
neighbours communications guarantee the algorithm’s convergence. We hope that these fi ndings encourage
readers to further extend the framework according to their specifi c application requirements.

Short Communication

A Model Decomposition-in-
Time of Recurrent Neural
Networks: A Feasibility Analysis
L D’Amore*
University of Naples Federico II, Naples, Italy

Received: 03 February, 2025
Accepted: 18 February, 2025
Published: 19 February, 2025

*Corresponding author: L D’Amore, University of Naples
Federico II, Naples, Italy, E-mail: luisa.damore@unina.it;
luisa.damore@dma.unina.it

Keywords: Parallel-in-time approach; Domain
decomposition; Additive objective function; Constrained
least square problems; Recurrent neural networks;
Parallel algorithm

Copyright License: © 2025 D’Amore L. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

https://www.engineegroup.us

1. Introduction

Recurrent Neural Networks (RNNs) are a class of Deep
Learning models that are fundamentally designed to handle
sequential data. Unlike feedforward neural networks, RNNs
possess the unique feature of maintaining a memory of previous
inputs by using their internal state to process sequences of
inputs. This makes them ideally suited for applications where
the order of data points is crucial [1]. With the increase in the
size of the dataset and the improvement of the complexity of
the model, the demand for computational strength and storage
space in the training process also increases proportionally.
The present work is placed in the context of the design of
parallel algorithms for RNNs in large-scale applications where
parallelizing RNNs can be challenging due to their sequential
nature. We focus on RNNs with an additive loss function
consisting of a large number of component functions, let us
say fi, such as

   L min fii
   (1)

where each term corresponds to the error between some
data and the output of a parametric model, with being the vector
of parameters. An example is linear least squares problems,

where fi has a quadratic structure, except for a regularization
function. A more general class of additive cost problems is
nonlinear least squares [2,3].

Minimization of the Loss Function (LF) causes the most
training overhead. The structure of the additive cost function
has facilitated the use of parallel computing approaches
that are well-suited for the incremental approach [4]. Very
often, besides the exploitation of Graphics Processing Units'
acceleration [5], concurrency is introduced inside the operations
of each minimization step, at the cost of an all-to-one data
synchronization at the end of each step (this is the simplest
way to achieve what is defi ned in the context of deep learning as
data parallelism or the mini-batch gradient descent approach).
In the alternative, the incremental computing of the values
and subgradients of the components fi could be performed in a
distributed manner. This is defi ned as model parallelism. Naive
model parallelism is relatively simple. It’s straightforward to
split a large model into chunks of consecutive layers. However,
there’s a sequential dependency between inputs and outputs of
layers, so a naive implementation can lead to a large amount
of idle time while a worker waits for outputs from the previous
machine to be used as its inputs. We can reuse the ideas from
data parallelism by having each worker only process a subset

008

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: D’Amore L. A Model Decomposition-in-Time of Recurrent Neural Networks: A Feasibility Analysis. Trends Comput Sci Inf Technol. 2025;10(1):007-010.
Available from: https://dx.doi.org/10.17352/tcsit.000091

of data elements at one time, allowing us to cleverly overlap
new computations with wait time. Pipeline parallelism allows
the execution of a model to be partitioned such that multiple
micro-batches can execute different parts of the model code
concurrently [6-11].

In the presence of evolutionary problems, in the last
decades, Parallel-In-Time methods have been investigated
for reducing the temporal dimensionality of such problems.
Since Nievergelt, in 1964, proposed for the fi rst time the
decomposition algorithm for fi nding the parallel solutions
of evolutionary ordinary differential equations [12], the
methods of time-parallel time integration have been
extensively expanded and several relevant works can be
found in the literature. An extensive and updated literature
list can be found on the website [13] collecting information
about people, methods, and software in the fi eld of parallel-
in-time integration methods. By relying on results we have
obtained on the Kalman Filter and on variational methods
on the uncertainty quantifi cation models [14-16], in this
work we present the main idea underlying an ab-initio model
decomposition in time of RNNs. This approach implies both the
time series and the objective function decomposition among
computing resources. Local functionals are suitably modifi ed,
by imposing a regularization constraint in order to enforce the
matching of their solutions between adjacent sub-sequences.
Finally, according to the Additive Schwarz Method (ASM),
synchronization of local solutions is imposed iteratively. Such
synchronization guarantees the model convergence [16].

2. Model decomposition-in-time of RNNs

In the following, we summarize the key components of the
hybrid decomposition of RNNs. In particular, we introduce the
operators defi ning data reduction and localization then, fi nally,
we give the mathematics underlying decomposition in time of
RNNs. For simplicity, we consider the simplest RNN, with a
self-connected hidden state, through which information cycles
across time steps [17]. The decomposition approach could be
extended to other types of RNN.

2.1 Recurrent neural networks

RNNs are a class of deep learning models that are
fundamentally designed to handle sequential data. At each
time step, t = 1,...,q, the RNN takes an input vector, 0m

tx  and
returns the output vector 1m

ty  , s.t.

= ()t y ht t ty W h b  (2)

where

= () > 0,1
= 0 = 0,0

h W x W h b tt t th xh hh h
h t

   (3)

is the hidden state vector that captures information about
previous inputs, Wxh is the weight matrix between the input
and hidden layer, Whh is the weight matrix for the recurrent
connection (hidden-to-hidden), bt and bh are the bias vectors,
and fi nally σy and σh are the activation functions. The weight
matrices and the bias functions characterize the unknown

model. These parameters are obtained by minimizing a
predefi ned objective Function.

For convenience, at each time t = 1,..., q we concatenate
vectors xt and ht−1 to form a m0 + m1 dimensional vector at. Then,
if we pose

= (), = ()W W W WI Lxh hh

where 1 0 01 1 1
1, , ,

m m mm m m

I L t tW W x h
 

       , we write all
the weights together in the matrix

()1 0 1= (,)
m m m

W W WI L
 



It results that equations (2) and (3) can be written as

= () =1, , .y Wa t qt t t  (4)

Let
()1 0 1m m m

tG
 

 be the matrix obtained by each r.h.s. of

equation in (4);
() ()0 1 1= ()
m m m q

tg vec G
  

 be the vector obtained

by stacking the t r.h.s of the equation in (4) on top of one
another; let 1m q

z


 be the column vector obtained collecting
the vector yt (output of the RNN) q times. Finally, let

(1)0q m m
A

 


be the matrix whose t-th row is obtained by the vectors at, t =
1...,q. The equation in (4) can be written as the overdetermined
linear system [18,19].

Ag = z

(Least Square Minimization in RNNs) The least-square
minimization problem refers to the computation of g such that
[20]:

ˆ = ()g argmin J gg (5)

with objective function

2() =|| ||J g Ag z (6)

2.2 Model decomposition in time

The Model Decomposition in Time direction implies the
reduction of both the time series and the objective function
among computing resources. This is obtained by data reduction
operation and functional localization, respectively. Local
functions are obtained as a suitable modifi cation of the original
objective function. In particular, local functions are composed
of two parts: the fi rst part is the restriction of the original
objective function to the sub-interval, then a regularization
constraint is added in order to enforce the matching of their
solutions between adjacent sub-sequences.

(Data Reduction) Let w = [wt wt+1 ... wn]
T ∈ Rs be a vector with t

≥ 1 , n > 0, s = n − t and Ir = {1,...,r}, r > n and n > t. The extension
of w to Ir is:

: () = [...] ,1 2
s T rEO w EO w w w wrI Ir r

    (7)

where for i = 1,...,r

=

0 > <
w if t i niwi if i nandi t




 
 (8)

Let B = [B1 B2 ... Bn] ∈ Rm×n be such that Bj is the j −th column of

009

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: D’Amore L. A Model Decomposition-in-Time of Recurrent Neural Networks: A Feasibility Analysis. Trends Comput Sci Inf Technol. 2025;10(1):007-010.
Available from: https://dx.doi.org/10.17352/tcsit.000091



 



1
| \1 1 1,2\1 1,2

1 1
(| |) 2 11 1,22= ,1,2 1,2

1
| \2 2 1,2\2 1,2

k
g on I II I

k k
g g on Ik I Ig
k
g on I II I



















 




(18)

with the sets I1, I2 defi ned in (12) and I1,2 in (13).

Algorithm implementing local RNN on In1 and In2,

1: repeat

2: k:= k + 1

3: Call Loc-RNN

4: Exchange xk
i between adjacent subdomains and compute O1,2

5: until 1 <k k
i i epsg g 

3. Discussion

The aim of this work is only to illustrate the framework
underlying such innovative ideas. Many aspects have been
left intentionally unexplained. For example, regarding the
size of the overlapping interval, we note that the majority
of parallelization techniques fi rst decompose the domain
in nonoverlapping subdomains and then extend each
subdomain with halo regions to enable stencil operations in
a parallel context. Instead, the algorithm allows one to reduce
communications among adjacent subdomains to only those
nodes lying on the interfaces. In particular, if the widths of
the halo regions are equal to one grid node wide, the halo
nodes are actually the nodes of the overlapping region.
Otherwise, halo regions contain more nodes than overlapping
nodes and this means more communications among adjacent
subdomains. Hence, the algorithm reduces communication
times which depends on the number of inner nodes in
overlap regions. In addition, the extra work performed on the
overlapped region with an increasing size can be seen as the
effect of a preconditioner on the overlapping region which can
overestimate the solution [21].

Regarding the regularization parameter, we observe that
the regularization parameter plays an important trade-off role.
As is evident, when the regularization parameter overfi tting
occurs larger values are expected to produce reliable solutions
even if the DD-step number increases. The choice of a good
regularization parameter is one of the most important issues
in solving unconstrained minimization problems and there
exists a signifi cant amount of research in the literature
on the development of appropriate strategies for selecting
regularization parameters. Parameter choice methods can be
classifi ed according to the input they require. There are two
basic types: a-priori methods, requiring information about the
noise level on data. The discrepancy principle, developed and
analyzed by Morozov is the oldest one of them; data-driven
methods, require no extra information. Generalized Cross-
Validation (GCV), due to Wahba, is one of the most popular
methods [22].

B. For i < j (i = 1,...,n − 1 and j = 2,...,n) we defi ne the set Ii,j = {i,...,j}.
The restriction of B to the set Ij is:

1 2| : | = [...] ,j m jm nB B B B BI Ij j
    (9)

and to Ii,j is:

1| : | = [...] .
, ,

j m j im n i iB B B B BI Ii j i j
      (10)

(Objective Function Reduction) Let n1 ,n2 > 0 two natural
numbers less than q. Let

| : (| , |) | (| , |) , =1,2(,) (,)J u u J u u i jI I I II I I In n n nn n n ni j i ji j i j


 (11)

denote the restriction of J defi ned in (6).

For simplicity of notations, we let Ji,j � J|(Ii,Ij) with i, j = 1,2. We
consider the decomposition of RNNs in two subsets only.

(In Time DD-RNN setup) Let I = {1,...,q} be the index set of
rows of A. DD-RNN setup consists in decomposing I into 2 sets:

={1,..., }, ={ 1,..., },1 11 2
I n I n s qn n   (12)

where
1 1| |= >0I n ,

2 2| |= >0I n , and

={ 1,..., },1,2 1 1I n s n  (13)

is the overlap set. If s = 0, then I1 � I2 = ∅ and I1,2 ≠ ∅.
Restrictions of A to I1 and I2 are:

() ()1 0 1 2 0 1= | , = | ,1 21 2

n m m n m m
A A A AI I

   
   (14)

(In Time DD-RNN Algorithm) According to the ASM in [21],
we introduce the loop for k = 0,1,2,..., the model decomposition-
in-time leads to two RNNs solving iteratively the following
reduced least square minimization problems:

 11 1: = (,)11 1 1 21 1
1

1 1= | (,) (,)1 2 1,2 1 2(,)1 1 1 2
1

kk k kP g argmin J g gnkg

k k k kargmin J g g g gk I Ikg


 
 
  

 
 

  
 






 (15)

 11 1 1: = (,)22 2 2 11 2
2

1 1 1= | (,) (,)2 1 1,2 2 1(,)1 2 2 1
2

kn k kP g argmin J g gnkg

k k k kargmin J g g g gk I Ikg


 
 
  

  
 

   
 






(16)

O1,2 is the overlapping operator representing the data
exchange on the overlap set I1,2, and μ > 0 is the regularization
parameter.

In particular, we pose

(,) =|| (|) (|) ||, , =1,21,2 1,2 1,2
g g EO g EO g i ji j i jI I I Ii i


 (17)

with 1 1,2
|I Ii

EO g , 2 1,2
|I Ii

EO g be the extension to Ii, of restriction

to I1,2 in (13) of 1
1

n
g  and 2

2

n
g  , respectively.

As a solution, we get the sequence 1

0
{ }k

kg 
 such that:

010

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: D’Amore L. A Model Decomposition-in-Time of Recurrent Neural Networks: A Feasibility Analysis. Trends Comput Sci Inf Technol. 2025;10(2):007-010.
Available from: https://dx.doi.org/10.17352/tcsit.000091

Another issue is the employment of a dynamic load
balancing scheme based on adaptive and dynamic redefi ning of
initial decomposition. Specifi cally, in order to optimally choose
the domain decomposition confi guration, the partitioning
into subdomains must satisfy certain conditions. First, the
computational load assigned to subdomains must be equally
distributed. Good quality partitioning also requires the volume
of communication during calculation to be kept at its minimum.
In [15] the authors employed a dynamic load balancing
scheme based on adaptive and dynamic redefi ning of initial
decomposition, aimed to balance load between processors
according to data location. In particular, the authors focused
on the introduction of a dynamic redefi ning of initial DD in
order to deal with problems where the observations are non
uniformly distributed and generally sparse.

The most signifi cant fi nding is that we can solve several
smaller problems improving the accuracy-per-parameter
metric. Most importantly, subproblems can be solved in parallel,
leading to a scalable algorithm where the workers locally
exchange parameter updates via a nearest-neighbourhood
communication scheme, which does not require a fully
connected network. In contrast to other decomposition-in-
time approaches, in our approach local solvers run concurrently
from the beginning. Overall, the employment of the framework
on hybrid high-performance computing systems seems to be a
fruitful research area [23].

References
1. Schmidt RM. Recurrent neural networks (rnns): A gentle introduction and

overview. arXiv:1912.05911. 2019. Available from: https://doi.org/10.48550/
arXiv.1912.05911

2. Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006. ISBN-10:
0-387-31073-8. Available from: https://link.springer.com/book/9780387310732

3. Dennis JE Jr, Schnabel RB. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. SIAM; 1996. Available from: https://books.
google.co.in/books/about/Numerical_Methods_for_Unconstrained_Opti.
html?id=RtxcWd0eBD0C&redir_esc=y

4. Bertsekas DP. Incremental Gradient, Subgradient, and Proximal Methods for
Convex Optimization: A Survey. arXiv:1507.01030v2. 2017. Available from:
https://doi.org/10.48550/arXiv.1507.01030

5. Paine T, Jin H, Yang J, Lin Z, Huang T. GPU asynchronous stochastic gradient
descent to speed up neural network training. arXiv:1312.6186. 2013. Available
from: https://doi.org/10.48550/arXiv.1312.6186

6. Jager S, Zorn HP, Igel S, Zirpins C. Parallelized training of deep NN: Comparison
of current concepts and frameworks. In: Proceedings of the Second Workshop on
Distributed Infrastructures for Deep Learning. 2018;15-20. Available from: https://
dl.acm.org/doi/10.1145/3286490.3286561

7. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. Available
from: https://www.nature.com/articles/nature14539

8. Lions JL, Maday Y, Turinici G. A parareal in time discretization of PDE’s. C R Acad
Sci Paris Ser I Math. 2001;332:661-668. Available from: https://www.scirp.org/
reference/referencespapers?referenceid=2232887

9. Mayer R, Jacobsen HA. Scalable Deep Learning on Distributed Infrastructures:
Challenges, Techniques and Tools. arXiv:1903.11314v1 [cs.DC]. 2019. Available
from: https://doi.org/10.1145/3363554

10. Messi Nguelle T, Nzekon Nzeko’o AJ, Onana DD. Parallelization of Recurrent
Neural Network training algorithm with implicit aggregation on multi-core

architectures. 2024. hal-04542984v2. Available from: https://inria.hal.science/hal-
04542984v2/document

11. Huang Z, Zweig G, Levit M, Dumoulin B, Oguz B, Chang S. Accelerating recurrent
neural network training via two stage classes and parallelization. In: 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding. IEEE. 2013;326-
331. Available from: https://ieeexplore.ieee.org/abstract/document/6707751

12. Nievergelt J. Parallel methods for integrating ordinary differential
equations. Commun ACM. 1964;7:731-733. Available from: https://doi.
org/10.1145/355588.365137

13. Parallel in time [Internet]. Available from: https://parallel-in-time.org/

14. Arcucci R, D’Amore L, Carracciuolo L. On the problem-decomposition of scalable
4D-Var Data Assimilation models. In: Proceedings of the International Conference
on High Performance Computing and Simulation. Amsterdam, The Netherlands.
2015;5895942. Available from: https://ieeexplore.ieee.org/document/7237097

15. D’Amore L, Cacciapuoti R. Parallel Dynamic Domain Decomposition
in Space-Time for Data Assimilation problems. J Phys Conf Ser.
2021;1828(1):012131. Available from: https://iopscience.iop.org/
article/10.1088/1742-6596/1828/1/012131

16. D’Amore L, Cacciapuoti R. Space-Time Decomposition of Kalman Filter. Numer
Math Theor Meth Appl. 2023;16(4):847-882. Available from: https://global-sci.
com/article/90230/space-time-decomposition-of-kalman-fi lter

17. Elman JL. Finding structure in time. Cogn Sci. 1990;14(2):179-211. Available from:
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1

18. D’Amore L, Murli A. Regularization of a Fourier series method for the Laplace
transform inversion with real data. Inverse Problems. 2002;18(4):1185-1205.
Available from: https://iopscience.iop.org/article/10.1088/0266-5611/18/4/315/
pdf

19. Murli A, Cuomo S, D’Amore L, Galletti A. Numerical regularization of a real
inversion formula based on the Laplace transform’s eigenfunction expansion
of the inverse function. Inverse Problems. 2007;23(2):713-731. Available from:
https://iopscience.iop.org/article/10.1088/0266-5611/23/2/015/pdf

20. Gander MJ. Schwarz methods over the course of time. ETNA. 2008;31:228-255.
Available from: https://etna.math.kent.edu/vol.31.2008/pp228-255.dir/pp228-
255.pdf

21. Gander W. Least squares with a quadratic constraint. Numer Math. 1980;36:291-
307. Available from: https://link.springer.com/article/10.1007/BF01396656

22. Golub GH, Heath M, Wahba G. Generalized Cross-Validation as a Method for
Choosing a Good Ridge Parameter. Technometrics. 1979;21(2):215-223. Available
from: https://doi.org/10.2307/1268518

23. Carracciuolo L, D’Amore L, D’Amore L, Murli A. Towards a parallel component
for imaging in PETSc programming environment: A case study in 3-D
echocardiography. Parallel Comput. 2006;32(1):67-83. Available from: https://doi.
org/10.1016/j.parco.2005.09.001

https://www.peertechzpublications.org/submission

