
007

Citation: D’Amore L. A Model Decomposition-in-Time of Recurrent Neural Networks: A Feasibility Analysis. Trends Comput Sci Inf Technol. 2025;10(1):007-010. 
Available from: https://dx.doi.org/10.17352/tcsit.000091

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN: 

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Abstract

In the context of Recurrent Neural Networks, minimization of the Loss Function (LF) causes the most training 
overhead. Following the Parallel In-Time approaches, we introduce an ab-initio decomposition across time 
direction. The key point of our approach lies in the innovative defi nition of local objective functions which allows 
us to overcome the sequential nature of the network and the management of dependencies between time steps. 
In particular, we defi ne local RNNs by adding a suitable overlapping operator to the local objective functions 
which guarantees their matching between adjacent subsequences. In this way, we get to a fully parallelizable 
decomposition of the RNN whose implementation avoids global synchronizations or pipelining. Nearest 
neighbours communications guarantee the algorithm’s convergence. We hope that these fi ndings encourage 
readers to further extend the framework according to their specifi c application requirements.
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1. Introduction

Recurrent Neural Networks (RNNs) are a class of Deep 
Learning models that are fundamentally designed to handle 
sequential data. Unlike feedforward neural networks, RNNs 
possess the unique feature of maintaining a memory of previous 
inputs by using their internal state to process sequences of 
inputs. This makes them ideally suited for applications where 
the order of data points is crucial [1]. With the increase in the 
size of the dataset and the improvement of the complexity of 
the model, the demand for computational strength and storage 
space in the training process also increases proportionally. 
The present work is placed in the context of the design of 
parallel algorithms for RNNs in large-scale applications where 
parallelizing RNNs can be challenging due to their sequential 
nature. We focus on RNNs with an additive loss function 
consisting of a large number of component functions, let us 
say fi, such as

   L   min fii
                     (1)

where each term corresponds to the error between some 
data and the output of a parametric model, with being the vector 
of parameters. An example is linear least squares problems, 

where fi has a quadratic structure, except for a regularization 
function. A more general class of additive cost problems is 
nonlinear least squares [2,3].

Minimization of the Loss Function (LF) causes the most 
training overhead. The structure of the additive cost function 
has facilitated the use of parallel computing approaches 
that are well-suited for the incremental approach [4]. Very 
often, besides the exploitation of Graphics Processing Units' 
acceleration [5], concurrency is introduced inside the operations 
of each minimization step, at the cost of an all-to-one data 
synchronization at the end of each step (this is the simplest 
way to achieve what is defi ned in the context of deep learning as 
data parallelism or the mini-batch gradient descent approach). 
In the alternative, the incremental computing of the values 
and subgradients of the components fi could be performed in a 
distributed manner. This is defi ned as model parallelism. Naive 
model parallelism is relatively simple. It’s straightforward to 
split a large model into chunks of consecutive layers. However, 
there’s a sequential dependency between inputs and outputs of 
layers, so a naive implementation can lead to a large amount 
of idle time while a worker waits for outputs from the previous 
machine to be used as its inputs. We can reuse the ideas from 
data parallelism by having each worker only process a subset 
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of data elements at one time, allowing us to cleverly overlap 
new computations with wait time. Pipeline parallelism allows 
the execution of a model to be partitioned such that multiple 
micro-batches can execute different parts of the model code 
concurrently [6-11].

In the presence of evolutionary problems, in the last 
decades, Parallel-In-Time methods have been investigated 
for reducing the temporal dimensionality of such problems. 
Since Nievergelt, in 1964, proposed for the fi rst time the 
decomposition algorithm for fi nding the parallel solutions 
of evolutionary ordinary differential equations [12], the 
methods of time-parallel time integration have been 
extensively expanded and several relevant works can be 
found in the literature. An extensive and updated literature 
list can be found on the website [13] collecting information 
about people, methods, and software in the fi eld of parallel-
in-time integration methods. By relying on results we have 
obtained on the Kalman Filter and on variational methods 
on the uncertainty quantifi cation models [14-16], in this 
work we present the main idea underlying an ab-initio model 
decomposition in time of RNNs. This approach implies both the 
time series and the objective function decomposition among 
computing resources. Local functionals are suitably modifi ed, 
by imposing a regularization constraint in order to enforce the 
matching of their solutions between adjacent sub-sequences. 
Finally, according to the Additive Schwarz Method (ASM), 
synchronization of local solutions is imposed iteratively. Such 
synchronization guarantees the model convergence [16].

2. Model decomposition-in-time of RNNs

In the following, we summarize the key components of the 
hybrid decomposition of RNNs. In particular, we introduce the 
operators defi ning data reduction and localization then, fi nally, 
we give the mathematics underlying decomposition in time of 
RNNs. For simplicity, we consider the simplest RNN, with a 
self-connected hidden state, through which information cycles 
across time steps [17]. The decomposition approach could be 
extended to other types of RNN.

2.1 Recurrent neural networks 

RNNs are a class of deep learning models that are 
fundamentally designed to handle sequential data. At each 
time step, t = 1,...,q, the RNN takes an input vector, 0m

tx   and 
returns the output vector 1m

ty  , s.t.

= ( )t y ht t ty W h b                  (2)

where

= ( )    > 0,1
= 0                                             = 0,0

h W x W h b tt t th xh hh h
h t

                (3)

is the hidden state vector that captures information about 
previous inputs, Wxh is the weight matrix between the input 
and hidden layer, Whh is the weight matrix for the recurrent 
connection (hidden-to-hidden), bt and bh are the bias vectors, 
and fi nally σy and σh are the activation functions. The weight 
matrices and the bias functions characterize the unknown 

model. These parameters are obtained by minimizing a 
predefi ned objective Function.

For convenience, at each time t = 1,..., q we concatenate 
vectors xt and ht−1 to form a m0 + m1 dimensional vector at. Then, 
if we pose

= ( ), = ( )W W W WI Lxh hh

where 1 0 01 1 1
1, , ,

m m mm m m

I L t tW W x h
 

       , we write all 
the weights together in the matrix

( )1 0 1= ( , )
m m m

W W WI L
 



It results that equations (2) and (3) can be written as

= ( ) =1, , .y Wa t qt t t                (4)

Let 
( )1 0 1m m m

tG
 

  be the matrix obtained by each r.h.s. of 

equation in (4); 
( ) ( )0 1 1= ( )
m m m q

tg vec G
  

  be the vector obtained 

by stacking the t r.h.s of the equation in (4) on top of one 
another; let 1m q

z


  be the column vector obtained collecting 
the vector yt (output of the RNN) q times. Finally, let 

( 1)0q m m
A

 
  

be the matrix whose t-th row is obtained by the vectors at, t = 
1...,q. The equation in (4) can be written as the overdetermined 
linear system [18,19].

Ag = z

(Least Square Minimization in RNNs) The least-square 
minimization problem refers to the computation of g such that 
[20]: 

ˆ = ( )g argmin J gg                   (5)

with objective function

2( ) =|| ||J g Ag z                       (6)

2.2 Model decomposition in time

The Model Decomposition in Time direction implies the 
reduction of both the time series and the objective function 
among computing resources. This is obtained by data reduction 
operation and functional localization, respectively. Local 
functions are obtained as a suitable modifi cation of the original 
objective function. In particular, local functions are composed 
of two parts: the fi rst part is the restriction of the original 
objective function to the sub-interval, then a regularization 
constraint is added in order to enforce the matching of their 
solutions between adjacent sub-sequences.

(Data Reduction) Let w = [wt wt+1 ... wn]
T ∈ Rs be a vector with t 

≥ 1 , n > 0, s = n − t and Ir = {1,...,r}, r > n and n > t. The extension 
of w to Ir is:

: ( ) = [ ... ] ,1 2
s T rEO w EO w w w wrI Ir r

                  (7)

where for i = 1,...,r

   
=

0     > <
w if t i niwi if i nandi t




 
                   (8)

Let B = [B1 B2 ... Bn] ∈ Rm×n be such that Bj is the j −th column of 
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

 



1
|  \1 1 1,2\1 1,2

1 1
( | | )  2 11 1,22= ,1,2 1,2

1
|  \2 2 1,2\2 1,2

k
g on I II I

k k
g g on Ik I Ig
k
g on I II I



















 



                       

(18)

with the sets I1, I2 defi ned in (12) and I1,2 in (13).

Algorithm implementing local RNN on In1 and In2,

1: repeat

2: k:= k + 1

3: Call Loc-RNN

4: Exchange xk
i between adjacent subdomains and compute O1,2 

5: until 1 <k k
i i epsg g 

3. Discussion

The aim of this work is only to illustrate the framework 
underlying such innovative ideas. Many aspects have been 
left intentionally unexplained. For example, regarding the 
size of the overlapping interval, we note that the majority 
of parallelization techniques fi rst decompose the domain 
in nonoverlapping subdomains and then extend each 
subdomain with halo regions to enable stencil operations in 
a parallel context. Instead, the algorithm allows one to reduce 
communications among adjacent subdomains to only those 
nodes lying on the interfaces. In particular, if the widths of 
the halo regions are equal to one grid node wide, the halo 
nodes are actually the nodes of the overlapping region. 
Otherwise, halo regions contain more nodes than overlapping 
nodes and this means more communications among adjacent 
subdomains. Hence, the algorithm reduces communication 
times which depends on the number of inner nodes in 
overlap regions. In addition, the extra work performed on the 
overlapped region with an increasing size can be seen as the 
effect of a preconditioner on the overlapping region which can 
overestimate the solution [21].

Regarding the regularization parameter, we observe that 
the regularization parameter plays an important trade-off role. 
As is evident, when the regularization parameter overfi tting 
occurs larger values are expected to produce reliable solutions 
even if the DD-step number increases. The choice of a good 
regularization parameter is one of the most important issues 
in solving unconstrained minimization problems and there 
exists a signifi cant amount of research in the literature 
on the development of appropriate strategies for selecting 
regularization parameters. Parameter choice methods can be 
classifi ed according to the input they require. There are two 
basic types: a-priori methods, requiring information about the 
noise level on data. The discrepancy principle, developed and 
analyzed by Morozov is the oldest one of them; data-driven 
methods, require no extra information. Generalized Cross-
Validation (GCV), due to Wahba, is one of the most popular 
methods [22].

B. For i < j (i = 1,...,n − 1 and j = 2,...,n) we defi ne the set Ii,j = {i,...,j}. 
The restriction of B to the set Ij is:

1 2| : | = [ ... ] ,j m jm nB B B B BI Ij j
                  (9)

and to Ii,j is:

1| : | = [ ... ] .
, ,

j m j im n i iB B B B BI Ii j i j
                  (10)

(Objective Function Reduction) Let n1 ,n2 > 0 two natural 
numbers less than q. Let

| : ( | , | ) | ( | , | ) , =1,2( , ) ( , )J u u J u u i jI I I II I I In n n nn n n ni j i ji j i j


      (11) 

denote the restriction of J defi ned in (6).

For simplicity of notations, we let Ji,j � J|(Ii,Ij) with i, j = 1,2. We 
consider the decomposition of RNNs in two subsets only.

(In Time DD-RNN setup) Let I = {1,...,q} be the index set of 
rows of A. DD-RNN setup consists in decomposing I into 2 sets:

={1,..., }, ={ 1,..., },1 11 2
I n I n s qn n                 (12)

where 
1 1| |= >0I n , 

2 2| |= >0I n , and

={ 1,..., },1,2 1 1I n s n                (13)

is the overlap set. If s = 0, then I1 � I2 = ∅ and I1,2 ≠ ∅. 
Restrictions of A to I1 and I2 are:

( ) ( )1 0 1 2 0 1= | , = | ,1 21 2

n m m n m m
A A A AI I

   
                 (14)

(In Time DD-RNN Algorithm) According to the ASM in [21], 
we introduce the loop for k = 0,1,2,..., the model decomposition-
in-time leads to two RNNs solving iteratively the following 
reduced least square minimization problems:

 11 1: = ( , )11 1 1 21 1
1

1 1= | ( , ) ( , )1 2 1,2 1 2( , )1 1 1 2
1

kk k kP g argmin J g gnkg

k k k kargmin J g g g gk I Ikg


 
 
  

 
 

  
 






 (15)

 11 1 1: = ( , )22 2 2 11 2
2

1 1 1= | ( , ) ( , )2 1 1,2 2 1( , )1 2 2 1
2

kn k kP g argmin J g gnkg

k k k kargmin J g g g gk I Ikg


 
 
  

  
 

   
 






(16)

O1,2 is the overlapping operator representing the data 
exchange on the overlap set I1,2, and μ > 0 is the regularization 
parameter.

In particular, we pose

( , ) =|| ( | ) ( | ) ||, , =1,21,2 1,2 1,2
g g EO g EO g i ji j i jI I I Ii i


       (17)

with 1 1,2
|I Ii

EO g , 2 1,2
|I Ii

EO g  be the extension to Ii, of restriction 

to I1,2 in (13) of 1
1

n
g   and 2

2

n
g  , respectively.

As a solution, we get the sequence 1

0
{ }k

kg 
  such that:
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Another issue is the employment of a dynamic load 
balancing scheme based on adaptive and dynamic redefi ning of 
initial decomposition. Specifi cally, in order to optimally choose 
the domain decomposition confi guration, the partitioning 
into subdomains must satisfy certain conditions. First, the 
computational load assigned to subdomains must be equally 
distributed. Good quality partitioning also requires the volume 
of communication during calculation to be kept at its minimum. 
In [15] the authors employed a dynamic load balancing 
scheme based on adaptive and dynamic redefi ning of initial 
decomposition, aimed to balance load between processors 
according to data location. In particular, the authors focused 
on the introduction of a dynamic redefi ning of initial DD in 
order to deal with problems where the observations are non 
uniformly distributed and generally sparse.

The most signifi cant fi nding is that we can solve several 
smaller problems improving the accuracy-per-parameter 
metric. Most importantly, subproblems can be solved in parallel, 
leading to a scalable algorithm where the workers locally 
exchange parameter updates via a nearest-neighbourhood 
communication scheme, which does not require a fully 
connected network. In contrast to other decomposition-in-
time approaches, in our approach local solvers run concurrently 
from the beginning. Overall, the employment of the framework 
on hybrid high-performance computing systems seems to be a 
fruitful research area [23].
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