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Abstract

This study introduces a simple yet effective computational method for particle search and positioning in 3D cells by combining the newly proposed Volume Comparison 
(VC) method with the Cartesian Cell Registration (CCR) method. Our method achieves a remarkable speed-up ratio of 9,675 relative to the brute-force search in rarefi ed 
gas fl ow simulations using the DSMC method with 61,047 computational 3D cells. Furthermore, our results indicate that the proposed method is approximately 4.45 to 
5.73 times faster than the conventional methods, owing to the reduced number of cells requiring search. Moreover, it eliminates the time step restrictions inherent in the 
conventional methods by permitting particles to move beyond adjacent cells, this permits larger time steps, further reducing computational cost. Additionally, our method 
precisely performs particle search and positioning—determining whether a particle is located within three-dimensional convex or concave cells, regardless of type—
and facilitates effi  cient computation of residence times by geometrically analyzing particle trajectories and their intersections with cell boundaries. These techniques 
effectively address challenges such as handling moving or deforming meshes without necessitating re-registration, employing the inverse deformation function to ensure 
robustness. By combining accuracy with computational effi  ciency, the VC and CCR methods prove highly effective for advanced simulations involving particle search and 
positioning in complex 3D environments, such as rarefi ed gases, solvents, diesel sprays in engines, molecules in nanoscale fl ows, the dynamics of granular materials, and 
the gas-phase equations of multiphase fl ows.
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1. Introduction

Engineering ϐluid dynamics simulations frequently 
involve tracking discrete elements, such as particles in 
rareϐied gases [1-3], solvents, diesel sprays in engines 
[4,5], molecules in nanoscale ϐlows [6], or the dynamics 
of granular materials [7,8]. Accurately identifying the 
computational cell a particle occupies is essential for 
monitoring its movement over time. Moreover, determining 
the residence time of a particle in each cell it traverses 
is critical for calculating source terms in the gas-phase 
equations of multiphase ϐlows [9-13]. 

Determining whether a particle resides within a 

polygonal cell (serving as a computational cell), the 
conventional methods sequentially track the particle from 
its starting cell to its ending cell, restricting movement 
beyond adjacent cells. As a result, a small time step size is 
required. For each cell, this process relies on multiple if-
statements to evaluate the particle's position relative to 
the cell's edges, vertices, and intersections [6,9,10,14-16], 
requiring at least as many evaluations as the product of the 
number of edges (in 2D) or faces (in 3D) and the number of 
cells the particle crosses. 

Compared to two dimensions, extending computational 
methods to three dimensions [17,18] substantially 
increases the computational burden and complicates code 
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management, particularly in 3D simulations. Furthermore, 
if the cell is concave, the algorithm may enter an inϐinite 
loop [7]. For moving cells, it is crucial to ensure that the 
cell does not shift to such an extent that the particle moves 
beyond a single neighboring cell from its original position 
[7].

To improve computational efϐiciency for searching 
cells, and by taking advantage of the Cartesian grid system, 
Liang, et al. [19] proposed a DSMC method [1-3] that 
combines two levels of Cartesian grid systems combined 
with an unstructured triangular grid system. However, as 
pointed out by Wang Z. et al. [20], although this method 
improved computational efϐiciency, several calculations 
must be performed separately at the junction between the 
two types of grids, which is relatively tedious. 

Moreover, the DSMC (Direct Simulation Monte Carlo) 
method is a numerical technique used to simulate gas 
ϐlows, particularly under rareϐied (low-density) conditions 
where traditional Navier–Stokes equations become invalid. 
Originally developed by G.A. Bird in the 1960s, DSMC has 
become a standard tool for studying non-equilibrium gas 
dynamics, such as those encountered in hypersonic ϐlows, 
vacuum systems, micro/nano-scale ϐlows, and upper-
atmosphere physics.

Wang C, et al. [21] divided the computational domain into 
various rectangular regions within Cartesian grid systems 
that contain a small number of triangular cells. The particle 
trajectory is tracked by ϐirst searching the rectangular 
regions and then the triangular cells. This method also 
enhanced computational efϐiciency. However, the grid 
conϐiguration is limited to triangular cells, and searching 
for cells in small areas can still be time-consuming.

Wang Z, et al. [20] also proposed the Background 
Cartesian Grid Positioning (BCP) technique for two-
dimensional computations. In this technique, a structured 
grid system is superimposed onto a layer of a background 
Cartesian grid system, and the geometric relationship 
between the structured and background grids is established 
in advance to limit the cells that need to be searched later. 
Although their results showed a signiϐicant decrease in the 
computational time required for particle positioning, BCP is 
limited to structured grid systems. Furthermore, applying 
BCP to three-dimensional grids may be challenging.

To address these challenges, more efϐicient and simple 
methods using a distinctly different approach have been 
proposed: the Cartesian Cell Registration (CCR) method 
and the Area Comparison (AC) method [22,23]. The 
CCR method signiϐicantly reduces the number of cells to 
be searched by associating structured or unstructured 
computational cells with Cartesian cells (rectangles or 
squares), completely eliminating the need for sequential 

cell searches  from the starting cell to the ending cell. The 
AC method simpliϐies particle localization by using a single 
if-statement for area comparison, while the conventional 
methods require multiple if-statements, often exceeding the 
number of edges (2D) or faces (3D) per cell. Moreover, the 
conventional methods involve fairly intricate programming 
that demands careful geometric analysis of the particle’s 
position relative to edges or faces. The CCR and AC methods 
were applied to rareϐied gas ϐlow around a two-dimensional 
circular cylinder, signiϐicantly reducing computational time 
compared to the brute-force method [23].

In this paper, the AC method is extended to three 
dimensions, leading to the development of the Volume 
Comparison (VC) method. The CCR and VC methods are 
applied to three-dimensional rareϐied gas ϐlow around a 
sphere using the DSMC method [1-3], achieving a speed-
up ratio of 9,675 with 61,047 computational 3D cells. 
The speed-up ratio scales linearly with the number of 
cells. Furthermore, the results indicate that our method 
is approximately 4.45 to 5.73 times faster than the 
conventional methods due to the reduced number of cells 
that must be searched. Additionally, the proposed method 
eliminates the time step restrictions inherent in the 
conventional methods by permitting particles to traverse 
nonadjacent cells, this permits larger time steps, further 
reducing computational cost.

This paper also explores how both the CCR and VC 
methods track particle paths from the starting cell to the 
ending cell to compute residence times in each cell. It 
further discusses aspects related to concave and moving 
cells.

Cartesian cell registration method

2.1 Three-dimensional mesh around a sphere

Before explaining the three-dimensional CCR method, a 
3D mesh is created around a sphere with a radius of 0.05 
m. The process begins by generating a two-dimensional 
mesh around a semicircle as the base mesh (Figure 1), with 
intentionally small radial (Nr = 10) and circumferential 
(Nc = 10) divisions to clearly visualize the cells. This base 
mesh is then rotated around the x-axis (horizontal axis in 
Figure 1) to create a rotationally symmetric 3D mesh with 
11 circumferential divisions (Nx = 11). The side, top, front, 
and isometric views are shown in Figures 2-5. Each 3D cell 
is assigned a number. Periodic boundary conditions are 
applied in the calculations to perform DSMC simulations 
over the entire spherical domain. This type of boundary 
condition is commonly used in ϐluid dynamics simulations. 
When a particle exits one side of the computational domain 
(e.g., the plane at z=0 with y>0), it re-enters from the 
opposite side (e.g., the plane at z=0 with y<0), effectively 
causing the domain to "wrap around" on itself.
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Let us consider a mesh around a circular cylinder 
(shown in red in Figure 6) to be registered with a Cartesian 
mesh (black). The target mesh (red) can adopt structured, 
unstructured, or polygonal conϐigurations, and supports 
both sequential and arbitrary cell numbering. Consider a 
square Cartesian cell S0  with a cell width W (Figure 7). All 
red cells in the target mesh with centers within a distance 
R from the center of S0  are registered with S0 . This process 
is repeated for all Cartesian cells and target red cells. The 
Cartesian cell containing a target particle can be identiϐied 
through straightforward geometric calculations using the 
particle's coordinates. From there, the corresponding target 
cell is determined by searching only the cells registered 
with the Cartesian cell. The cell where the particle exists 
is then determined using the AC method, as described in 
Chapter 3.

Next, the Cartesian Cell Registration (CCR) method for 
three-dimension is explained. In Figure 8, a 3D cell (red) 
of the thr ee-dimensional mesh and the  three-dimensional 
Cartesian cells (blue) are shown. Let the width and height of 
the projected area of the red cell be denoted as dW and dH, 
respectively. Similarly, let the depth of this cell be dD (not 
shown in this ϐigure). Then, this red cell is registered with 
the Cartesian cells in the box of dW, dH, and dD. While not 

2.2 Cartesian Cell Registration (CCR) method for three 
dimensions

References [22,23] introduce the Cartesian Cell 
Registration (CCR) method for two-dimensional meshes to 
reduce the number of cells that need to be searched. Before 
extending this method to three dimensions, we will brieϐly 
explain the two-dimensional CCR method.

Figure 1: Two-dimensional mesh around a semicircle.

Figure 2: Side view of the 3D mesh around a hemisphere.

Figure 3: Top view of the 3D mesh around a hemisphere.

Figure 4: Front view of the 3D mesh around a hemisphere.

Figure 5: Isometric view of the 3D mesh around a hemisphere.
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ideal, the method registers some unrelated Cartesian cells 
for simplicity are also registered. However, it simpliϐies the 
computer algorithm. In a real implementation, dW, dH, and 
dD are set slightly larger to ensure that every 3D cell in the 
three-dimensional mesh is registered without fail.

In Figures 9-12, the  3D cells (black) in the three-
dimensional mesh, the Cartesian cells (blue), and the 
hemisphere (green) are shown. For clarity, the size of the 
3D cells is intentionally set larger. To demonstrate how 
the CCR method works, Figures 13-16 show examples of 
the registered 3D cells (red) within a single Cartesian cell 

Figure 6: Target mesh (red) and Cartesian mesh (black).

Figure 7: The red cells within the blue circle are registered to the black Cartesian 
cell S0.

Figure 8: A 3D cell (red) is registered to the Cartesian cells (blue) within a box 
(green) defi ned by dW, dH, and dD.

Figure 9: Side view of the 3D cells (black), Cartesian cells (blue), and hemisphere 
(green).

Figure 10: Top view of the 3D cells (black), Cartesian cells (blue), and hemisphere 
(green).

Figure 11: Front view of the 3D cells (black), Cartesian cells (blue), and hemisphere 
(green).

(blue). Note that all red cells are registered with one or 
more Cartesian cells.

When a particle moves into this Cartesian cell, 
its location can be easily determined through simple 
calculations. The target 3D cell where the particle resides 
is then identiϐied within the red registered cells using the 
VC method explained in Chapter 3, rather than searching 
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through all 3D cells in the mesh. This signiϐicantly reduces 
the computational time, as demonstrated in Section 4. Note 
that our method allows the particle to be at an arbitrary 
position, unlike the conventional methods, which require it 
to remain within adjacent cells. 

The number of registered red cells in the above example 
is 292. However, as demonstrated in Chapter 4, the optimal 
average number of registered 3D cells is approximately 
four, which can be achieved using smaller and more 
numerous Cartesian cells.

3 Area comparison method and volume compari-
son method

3.1 Area comparison method for two dimensions

When searching for cells in a two-dimensional region 
using the CCR method presented in Chapter 2, it is 
necessary to identify the cell containing the target particle. 
To facilitate this, the Area Comparison (AC) method was 
introduced [22,23]. As mentioned in the Introduction, 
the conventional methods require multiple if-statements, 
often exceeding the number of edges (2D) or faces (3D) per 
cell. Moreover, they involve fairly intricate programming 
that demands carefully analyzing the particle’s geometric 

relation to cell boundaries. In contrast, the AC method 
requires only a single if-statement.

Before extending the AC method to three dimensions, 
the two-dimensional method is brieϐly explained below.

Consider a target particle P₁ and a quadrilateral cell 
C₁ with area S as shown in Figure 17. Let S₁ be the sub-
area of the triangle formed by vertices v₁, v₂ of C₁, and the 
particle position P₁. Similarly, let S₂, S₃, and S₄ represent 
the sub-areas of triangles ΔP₁v₂v₄, ΔP₁v₃v₄, and ΔP₁v₁v₃, 

Figure 12: Isometric view of the 3D cells (black), Cartesian cells (blue), and 
hemisphere (green).

Figure 13: Side view of a Cartesian cell (blue), registered 3D cells (red), and the 
hemisphere mesh (gray).

Figure 14: Top view of a Cartesian cell (blue), registered 3D cells (red), and the 
hemisphere mesh (gray).

Figure 15: Front view of a Cartesian cell (blue), registered 3D cells (red), and the 
hemisphere mesh (gray).

Figure 16: Isometric view of a Cartesian cell (blue), registered 3D cells (red), and the 
hemisphere mesh (gray).
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respectively. The presence of the particle within C₁ can be 
veriϐied using the following simple condition:

If S = S₁ + S₂ + S₃ + S₄, then the particle P₁ exists within 
the cell C₁ (Figure 17(a)).

Moreover, if S = S₁ + S₂ + S₃ + S₄ and S₁ = 0, then the 
particle lies on the edge v₁v₂. Additionally, if S = S₁ + S₂ 
+ S₃ + S₄, S₁ = 0, and S₂ = 0, then the particle is located at 
vertex v₂. Finally, if S ≠ S₁ + S₂ + S ₃ + S ₄, then the particle 
lies outside C₁ (Figure 17(b)). This method can easily be 
extended to any convex polygonal cell.

As mentioned in the Introduction, if the cell is concave, 
the program may risk entering an inϐinite loop [7]. However, 
the presence of a particle within a concave quadrilateral 
cell, as illustrated in Figure 18, can be veriϐied using the 
following straightforward condition:

If the particle lies within triangle Δv₁v₃v₄ but does not 
lie within triangle Δv₁v₂v₃, then the particle exists within 
the concave cell v₁v₂v₃v₄. In the formulation of the AC 
method, if

ΔP₁v₁v₃ + ΔP₁v₃v₄ + ΔP₁v₁v₄ = Δv₁v₃v₄

And

ΔP₁v₁v₃ + ΔP₁v₂v₃ + ΔP₁v₁v₂ ≠ Δv₁v₂v₃,

then the particle exists within the concave cell v₁v₂v₃v₄.

3.2 Volume Comparison method for three dimensions

The AC method can be easily extended to 3D by 
comparing volumes instead of areas. This approach is 
referred to as the Volume Comparison (VC) method, as 
detailed in the following discussion.

As shown in Figure 19, consider a convex hexahedral 
cell with vertices v₁ to v₈ and a particle at P₁. Six square 
pyramids can be created, each with a face as its base and 
the particle as its apex. Speciϐically, V0 refers to the volume 
of the convex hexahedral cell deϐined by vertices v₁  through 
v₈, while V1 corresponds to the volume of the square 
pyramid formed by points P₁, v₁, v₂, v₆, and v₅, and so forth 
for the subsequent volumes. Apparently, if V1 + V2 + V3 + V 4 

+ V5 + V6 = V0, then the particle exists within the hexahedral 
cell. Under this condition:

1. If one of the six sub-volumes (V1–V6) equals 0, the 
particle lies on the base (surface) of the square 
pyramid.

2. If two of the sub-volumes equal 0, the particle lies on 
an edge of the hexahedral cell.

3. If three of the sub-volumes equal 0, the particle lies on 
a vertex of the hexahedral cell.

Moreover, as shown in Figure 20, consider a concave 
hexahedral cell with vertices v₁ to v₈ and a particle at P₁. 
If the particle is inside the triangular prism formed by the 
vertices v₁, v₂, v₄, v₅, v₆, and v₈, and if the particle is not 
inside the triangular region formed by the vertices v₃, v₂, 
v₄, v₇, v₆, and v₈, then the particle exists within the concave 
hexahedral cell. The existence of the particle within a 
triangular prism mentioned above can be veriϐied by 
comparing the volumes as follows:

A triangular prism with vertices v₁ to v₆ and a particle 
at P₁ is shown in Figure 21. Let the sub-volumes of two 
triangular pyramids (the vertices P₁, v₁, v₂, v₃ and P₁, v₄, 
v₅, v₆) be V1 and V2. Let the sub-volumes of three square 
pyramids (the ver tices P₁,v₁,v₄,v ₆,v ₃, P₁,v₁,v₄,v₅,v₂, and 
P₁,v₂,v₅,v₆,v₂) be V3, V4, and V5, respectively. The volume of 
the entire triangular prism is V0. The particle exists inside 
the triangular prism if the following condition holds:

Figure 17: Area comparison method for positioning a particle.
(a) The particle is inside C1 when S = S1 + S2 + S3 + S4
(b) The particle is outside C1 when S   S1 + S2 + S3 + S4

Figure 18: A concave cell.

Figure 19: Convex hexahedron cell with vertices v1 to v8 and a particle at P1.
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V1 + V2 + V3 + V4 + V5 = V0.

The VC method readily generalizes to any polyhedral 
geometry, not just those shown here, including concave 
hexahedral cells, which may cause the program to enter an 
inϐinite loop [7]. Note that when the area (in 2D) or volume 
(in 3D) is very small or slender, the computational results 
may be susceptible to errors. However, such issues are also 
likely to occur in the conventional methods.

In this section, we have introduced the VC method for 
three dimensions and the concept of handling concave cells 
using the VC method. In the next chapter, the computational 
results and evaluation for convex cells in a 3D mesh, as 
shown in Figure 2-5, will be presented, while those for 
concave cells will be discussed in a future paper.

4. Computational results and evaluations

4.1 Comparison with other simulations

Before evaluating the computational efϐiciency of the 
CCR and VC methods, we compare the results of our DSMC 
simulation with those of [24] using identical parameters: 
neon as the gas, Mach number Ma = 2, rarefaction parameters 
δ = 1  and δ = 30, and a free-stream temperature T = 300 
K. For our simulations, the number of radial divisions is 
Nr = 40, the circumferential divisions are Nc = 50, and the 
axial divisions are Nx = 15, resulting in a total cell count 
of 30,000. Our computer is equipped with an Intel Core 

i9-14900KF CPU (3.2–6.0 GHz) and 128 GB of memory. 
No parallel computing nor large-scale computations were 
performed.

• The stability criterion for the DSMC (Direct 
Simulation Monte Carlo) method differs from 
classical numerical stability conditions such as the 
Courant–Friedrichs–Lewy (CFL) condition used in 
conventional CFD. To ensure stable and accurate 
DSMC simulations, the following guidelines should 
be followed:The time step Δt must be signiϐicantly 
smaller than the local mean collision time τ to 
prevent multiple collisions within a single time step.

• The computational cell size Δx should be smaller 
than or comparable to the local mean free path λ, 
ensuring that collisions occur only between nearby 
particles.

• Each cell should contain a sufϐicient number of 
particles—typically at least 10 to 30—to provide 
statistically meaningful collision sampling.

• Particle displacement within a time step should be 
smaller than the cell size, i.e., particles should not 
travel farther than one cell in a single time step.

Furthermore, the statistical error scaling for DSMC, 
as discussed in [2], demonstrates the characteristic 1 / N  
behavior of statistical noise, where N is the number of 
simulated particles. In our simulations, the total number of 
particles is approximately 1.3 million, which is sufϐicient to 
ensure a low level of statistical error.

In Figures 22,23, the steady-state temperature and 
velocity distributions at δ = 30 are presented on the x-y 
plane and x-z plane, respectively. In Figures 24, comparisons 
of the temperature distributions from [24] (upper) and 
our results (lower) at δ = 1 and δ = 30 demonstrate good 
agreement. Speciϐically, in both cases, when the rarefaction 
parameter is smaller (δ = 1), the high-temperature region 
in front of the sphere becomes thicker along the x-direction 
and narrower along the y-direction. In contrast, for a larger 
rarefaction parameter (δ = 30), the high-temperature 
region becomes thinner in the x-direction and broader in 
the y-direction.

The observed differences—speciϐically, the coarser 
temperature distribution downstream of the sphere in 
our results compared to those of [24]—may be attributed 
to the smaller number of particles and cells used in our 
simulations, as well as the size of the computational 
regions. However, since the primary objective of this paper 
is to demonstrate the computational efϐiciency of the CCR 
and VC methods rather than to improve computational 
accuracy, this discrepancy is considered acceptable.

Figure 20: Concave hexahedron cell with vertices v1 to v8 and a particle at P1.

Figure 21: Triangular prism cell with vertices v1 to v6 and a particle at P1.
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This sect ion focuses on validating our simulation 
results rather than comparing computational efϐiciency. 
An estimation of computational cost between the CCR and 
VC methods and the conventional methods is provided in 
Section 4.4.

4.2 Computational effi  ciency of the CCR method and 
VC method

To examine the computational efϐiciency, or the 
speed-up ratio, of the CCR and VC methods, the following 
simulations were conducted.

A three-dimensional mesh around a sphere was created 
using the parameters Nr = 51, Nc = 63, and Nx = 19, resulting 
in a total cell count of 61,047. The three-dimensional 
Cartesian cells, within which the cells around the sphere 
are registered, are all cubic. The edge size of a Cartesian 
cell ranges from 2.2 × 10⁻³ m to 1.1 m, as shown in Table 
1. When the edge size is as large as 1.1 m, all cells around 
the sphere are registered within a single Cartesian cell. As 
the edge size of the Cartesian cell decreases, the average 
number of registered 3D cells within each Cartesian cell 
also decreases, which in turn reduces the number of cells 
to search and lowers the CPU time required for particle 
searching.

When the edge size is 1.1 m (where all cells around the 
sphere are registered within a single Cartesian cell), the 
average time for the movement and searching of a single 
particle is considered equivalent to that of the brute-force 
method. This brute-force approach serves as a benchmark 
scenario where no speed-up techniques are applied. The 
speed-up ratio is deϐined as the time taken by the brute-
force method divided by the time required when using 
smaller Cartesian cell sizes. For each simulation, the 
total number of particles is approximately 1.3 million. 
Consequently, the maximum speed-up ratio is obtained as 
9,675 when the average number of registered 3D cells in a 
Cartesian cell is 3.95.

The comparison with another benchmark, speciϐically 
the conventional methods, is discussed in Section 4.4.

Tables 2 and 3 also present the results for fewer three-
dimensional cells around a sphere with the following 
parameters: Nr=40, Nc=50, and Nx=15, resulting in a 
total cell count of 30,000, and Nr =32, Nc =40, and Nx =12, 
resulting in a total cell count of 15,360. The maximum 
speed-up ratio is observed at Cartesian cell sizes of 3.67 × 
10⁻³ m and 4.30 × 10⁻³ m, respectively, with the average 
number of registered 3D cells in a Cartesian cell being 3.78 
(former) and 3.77 (latter).

Figures 25 shows that the average number of 3D cells 
registered in a Cartesian grid increases as the size of the 
Cartesian cells increases for three different 3D cell counts 
around a sphere. Additionally, for a given Cartesian cell 
size, the average number of registered 3D cells increases 
with the 3D cell count around the sphere.

Figure 22: Temperature distribution at δ=30 on the x-y plane and x-z plane.

Figure 23: Velocity distribution at δ=30 on the x-y plane and x-z plane.

Figure 24: Comparison of temperature distributions from [24] (upper) and our 
results (lower) at δ = 1 and δ = 30.
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Figures 26 also illustrates that the average CPU time 
for moving and searching a single particle decreases with 
decreasing Cartesian cell size but increases with higher cell 

Table 1: Computational Efϐiciency of the CCR and VC Methods for 61,047 
Cells (Nr = 51, Nc = 63, Nx = 19).

Cartesian 
cell size 

(m)

Cartesian 
cell number

Average number 
of registered 
3D cells in a 

Cartesian cell

Mean Time 
required for 

searching a Single 
Particle (s)

Speed-
up ratio

1.1 1 61047.00 5.82×10⁻³ 1 

5.50×10⁻1 8 16595.25 1.63×10⁻³ 4 

1.10×10⁻1 1000 244.52 3.48×10⁻5 167

3.24×10⁻2 39304 23.91 2.68×10⁻6 2172

2.20×10⁻2 125000 13.87 1.67×10⁻6 3494 

1.10×10⁻2 1000000 6.88 8.83×10⁻7 6598 

5.50×10⁻3 8000000 4.57 6.42×10⁻7 9071 

3.67×10⁻3 27000000 3.95 6.02×10⁻7 9675 

2.75×10⁻3 64000000 3.67 6.25×10⁻7 9313 

2.20×10⁻3 125000000 3.50 6.56×10⁻7 8885 

counts around the sphere. Moreover, Figures 27 presents 
the speed-up ratio as a function of Cartesian cell size. It is 
observed that the maximum speed-up ratio occurs for all 
three cell counts around the sphere.

Finally, Figures 28 shows that the maximum speed-up 
ratio increases linearly with the cell number around the 
sphere. This demonstrates that the efϐiciency of the CCR 
and VC methods increases with the number of cells and 
suggests they will be more efϐicient in larger-scale three-
dimensional DSMC simulations compared to those in this 
study.

Table 2: Computational Efϐiciency of the CCR and VC Method for 30,000 cells 
(Nr = 40, Nc = 50, Nx=15).

Cartesian 
cell size 

(m)

Cartesian 
cell number

Average number 
of registered 
3D cells in a 

Cartesian cell

Mean Time 
required for 

searching a Single 
Particle (s)

Speed-
up 

ratio

1.10 1 30000.00 2.86×10⁻3 1 

5.50×10⁻1 8 8339.50 8.21×10⁻4 3 

1.10×10⁻1 1000 142.74 2.02×10⁻5 142 

4.23×10⁻2 16576 24.82 2.94×10⁻6 973

2.20×10⁻2 125000 10.66 1.33×10⁻6 2150 

1.10×10⁻2 1000000 5.93 8.01×10⁻7 3570 

5.50×10⁻3 8000000 4.25 5.99×10⁻7 4772 

3.67×10⁻3 27000000 3.78 5.87×10⁻7 4873 

2.75×10⁻3 64000000 3.55 6.17×10⁻7 4635 

2.20×10⁻3 125000000 3.43 6.52×10⁻7 4390 

Table 3: Computational Efϐiciency of the CCR and VC Method for 15,360 cells 
(Nr = 32, Nc = 40, Nx=12).

Cartesian 
cell size 

(m)

Cartesian 
cell 

number

Average number of 
registered 3D cells 
in a Cartesian cell

Mean Time 
required for 

searching a Single 
Particle (s)

Speed-
up 

ratio

1.10 1 15360.00 1.47× 10⁻3 1

5.50×10⁻1 8 4373.25 3.98× 10⁻4 4

6.88×10⁻2 4096 36.96 4.74× 10⁻6 310 

5.50×10⁻2 8000 25.64 3.10× 10⁻6 474

3.44×10⁻2 32768 13.62 1.74× 10⁻6 845 

1.72×10⁻2 262144 6.98 9.14× 10⁻7 1608 

8.59×10⁻3 2097152 4.70 6.71× 10⁻7 2189 

4.30×10⁻3 16777216 3.77 5.77× 10⁻7 2546 

3.67×10⁻3 27000000 3.64 5.79× 10⁻7 2536 

2.75×10⁻3 64000000 3.46 6.39× 10⁻7 2300 
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4.3 Effect of cartesian cell size on algorithm effi  ciency 
and computational performance

The efϐiciency of the algorithm depends on the Cartesian 
cell size—that is, the average number of registered 3D 
cells within a Cartesian cell. It is assumed that the optimal 
Cartesian cell size should be as small as possible, ideally 
containing only a single registered 3D cell—although this 
may not always be feasible. In such a case, each Cartesian 
cell would lie entirely within a single 3D cell and could be 
identiϐied based on the particle's position using simple 
arithmetic calculations. Consequently, the corresponding 
3D cell could be identiϐied directly, eliminating the need 
for search operations, as only one 3D cell is registered 
within each Cartesian cell. However, if the Cartesian cells 
are large and contain multiple registered 3D cells, search 
time increases. In the extreme case where a Cartesian 
cell is large enough to encompass all 3D cells, the method 
essentially reverts to a brute-force search, as previously 
explained. In these simulations, the minimum computation 
time occurs when the average number of registered 3D 
cells within a Cartesian cell is approximately four instead 
of one, which was noted earlier. This may be because, as 
Cartesian cell count increases, memory usage and access 
time rise accordingly.

Furthermore, in these simulations, the ratio of 
the maximum to minimum 3D cell volume sizes is 
approximately 26,000. This demonstrates that the CCR 
method is capable of handling unstructured meshes with 
substantial variations in cell size.

4.4 Comparison of the CCR and VC methods with 
conventional methods

Although the conventional methods are not used in this 
paper, their computational cost can be estimated as follows.

Since the computational cost of calculating sub-areas 
(sub-volumes) in the AC (VC) method is comparable to 
that of evaluating edge (face) products in the conventional 
methods, the primary factor inϐluencing computational 

cost is the number of cells that need to be checked. In the 
conventional methods, the cells checked for the presence of 
a particle that has moved during a small time step are the 
adjacent cells of the one where the particle was previously 
located. For example, the number of cells to check is 9 in 
a 2D mesh (Figure 1) and 27 in a 3D mesh (Figures 2-5), 
including the cells that contain the original positions of the 
particles. Note that these values represent the maximum 
number of attempts required for particle search; however, 
in most cases, the particle is found before reaching this 
limit.

As demonstrated, the number of cells in a 3D mesh 
varies depending on the size of the Cartesian grid cells. The 
optimal number of cells is found to be around 4, which is 
smaller than 29 in the conventional methods, as mentioned 
above. As shown in Table 1, when the average number of 
registered 3D cells per Cartesian cell is 23.91—close to 
the 29 in the conventional methods; the speed-up ratio is 
2172. The maximum speed-up ratio reaches 9675 when the 
average number of registered cells is 3.95. This indicates 
that our method is approximately 4.45 times faster than 
the conventional methods, based on the ratio 9675 to 
2172. Similar ratios can be derived from Tables 2 and 3, 
where the values are 4873/973 = 5.01 and 2546/474 = 
5.73, respectively. Note that the number of cells to check 
is unlikely to increase in our method, even for 3D cells 
with a large number of faces, whereas it increases in the 
conventional methods.

1. Our method also enables longer time steps, 
unlike conventional methods, as it permits particles to 
move beyond adjacent cells, further reducing the overall 
computational cost. If a particle is near the edge or 
vertex of a cell, there is a high likelihood that it will move 
beyond adjacent cells, even with a small time step. This is 
illustrated in Figure 29, where a particle initially at X(t) in 
Cell A moves directly to Cell M within a single time step. 
In the conventional methods, the particle from Cell A is 
ϐirst searched for in the adjacent cells (Cells B–I). If it is 
not found, the search extends to the next set of adjacent 
cells (Cells J–M), increasing computational cost. To avoid 
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Figure 28: Maximum speed-up ratio as a function of the number of cells around a 
sphere.

Figure 29: A particle moving beyond adjacent cells.
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this repeated search, the time step must be reduced—
sometimes more than necessary—which can signiϐicantly 
increase overall computational time. However, our method 
seamlessly handles particles moving beyond adjacent cells, 
eliminating the aforementioned time step restriction and 
thereby reducing the overall computational cost.

5. Auxiliary considerations

In this chapter, only the concept of obtaining the 
residence time of a particle in each cell it crosses and that of 
performing calculations with a moving mesh using the CCR 
and AC methods are introduced. The actual computations 
using these methods will be presented in a future paper.

5.1 Residence time of a particle in each cell it crosses

As ment ioned in the Introduction, determining the 
particle's residence time in each cell it traverses is essential 
to compute source terms in gas-phase multiphase ϐlow 
equations. This section explains the method in two 
dimensions, with its extension to three dimensions being 
straightforward.

As shown in Figure 30, a particle at time t is located at 
position X(t) in Cell A and is transferred to position X(t+Δt) 
in Cell E after a relatively large discrete time interval Δt. The 
cell numbers for A and E can be identiϐied using the CCR 
and AC methods. The path of the particle is represented by 

the line segment ( ) ( )t t t+DX X  and the intersection point 

X1 with the vertex of Cell A is determined via geometric 
calculations. Although there are ϐive intersection points 
between this path and the cell’s vertices or their extensions 
or the extensions of the vertices of pentagon Cell A, as 
indicated by the red circles in Figure 31, the intersection 

point at vertex 1 2VV  is the one where either the area 

01 1 2V X VD =  or condition 1 1 1 2 1 2V X X V VV+ =  is satisϐied.

The cell number of Cell B can be determined using the 
CCR and AC methods for an imaginary particle placed at P1 
in Figure 30, which is located at a small distance Δl from 

the intersection point X1 toward X(t+Δt) ( )t t+DX  on the 

line segment ( ) ( )t t t+DX X . By repeating this process until 

the ϐinal Cell E, the path segment crossing each cell and 
the particle's residence time in each traversed cell can be 
determined.

5.2 Moving mesh

In this section, the CCR and AC methods are explained 
for use even when the mesh is moving or deforming. The 
method is described in two dimensions, and its extension 
to three dimensions is straightforward.

In almost all cases, a moving mesh is described 

Figure 30: Particle path from Cell A to Cell E.

Figure 31: Five intersection points (red circles) between the particle's path and the 
vertices or the extensions of the vertices of Cell A.

by mathematical equations, such as ( , , )x f tx h=  and 
( , , )y g tx h= , where x and y denote the coordinates of 

2D cells vertices at time t, and ξ and η are computational 
coordinates. This formulation allows for the mapping 
between the computational domain and the physical 
domain, facilitating the simulation of dynamic meshes in 
numerical analyses. For example, consider a simple case 
where the two-dimensional mesh moves or deforms only in 

the x-direction, described by the equation 2
( 3)x tx= + . In 

Figure 32(a), the two-dimensional mesh around a semicircle 
(black), the Cartesian mesh (blue), and a particle (red) at 
time 0 are shown. Additionally, Figure 32(b) displays the 
meshes and the particle at time t = 1. To demonstrate the 
validity of our methods, a large deformation is intentionally 
introduced. It can be observed that the meshes are 
compressed for small x -coordinates and expanded for large 
x-coordinates. Even though the Cartesian cell width varies 
with x -coordinates, the CCR method can still be applied to 
this deformation, as detailed in the following discussion.

In this example, the initial coordinates of the particle 

are ( , ) (0.85, 0.25)p px y = , and the width of the Cartesian 

cell is Δx = 0.2. This gives the Cartesian cell number as 

int( / ) 1 5px xD + = . Therefore, the cell containing the 

particle can be identiϐied by examining the cells registered 
with the ϐifth Cartesian cell from the left.
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(b) After deformation (t=1) 

(a) Before deformation (t=0) 

Figure 32: Deformation of the mesh around a semicircle (black) and the Cartesian mesh (blue), showing the particle at its initial position (red) and its transferred position 
(green).

After deformation,  the Cartesian cell number can be 

determined using the inverse function of 2
( 3)x tx= + , 

namely, 1
/ ( 3)f x t

- = + . The Cartesian cell number is 
then given by:

1 0.85( , )
int 1 int 1 int 1 343

0.2

pxf x t

tx
x

-

+ = + = + =+D
D
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This means that the Cartesian cell registration remains 
valid even after mesh deformation. Instead, the initial 
information of the CCR method can still be used after 
the mesh deformation. Therefore, the cell containing the 
particle at t =1 can be identiϐied by examining the cells 
registered with the third Cartesian cell from the left. This 
method can be extended to simultaneously account for 
deformation in both the y- and z-directions. 

Importantly, this method imposes no restrictions on 
particle movement across multiple cells. This addresses 
a limitation noted in [7], where particle movement was 
restricted. As shown in Figure 32(b), the particle can be 
regarded as moving from the green circle, which represents 
the transferred particle with the mesh, to the red circle, 
crossing multiple cells.

6. Conclusion

The contributions and key ϐindings of the CCR and VC 
methods highlighting key advantages over conventional 
approaches:

1. Simpli ied Implementation: When implementing 
particle search code from scratch, the VC method 
signiϐicantly simpliϐies the process compared to 

the conventional methods because it requires 
only a single if-statement per search, whereas 
the conventional methods require more than the 
number of edges (in 2D) or faces (in 3D) per cell. 
Additionally, they involve moderately intricate 
calculations that demand careful consideration of 
the geometric relationship between the particle’s 
position and edges or faces.

2. Optimized Search Ef iciency: The CCR method 
reduces the number of cells that need to be searched 
for particles. In a 3D mesh, this number depends on 
the Cartesian grid cell size, with the optimal number 
found to be around four—signiϐicantly fewer than 
the 27 required in the conventional methods for 
our 3D mesh. As a result, computational efϐiciency 
improves. Additionally, even for 3D cells with a 
large number of faces, the number of cells to check 
remains relatively stable in our method, whereas it 
increases in the conventional methods.

3. Elimination of Time Step Constraints: By 
combining the CCR and VC methods, the traditional 
time step restriction in the conventional methods—
requiring it to be small enough to prevent a particle 
from moving beyond adjacent cells—is eliminated. 
This allows for larger time steps, thereby signiϐicantly 
enhancing computational performance.

4. Computational Speed-Up: By integrating the CCR 
and VC methods, achieves a 9,675-fold speed-up over 
brute-force methods with 61,047 computational 
3D cells. Additionally, the reduced number of cells 
that must be searched indicates that our method 
is approximately 4.45 to 5.73 times faster than the 
conventional methods. Furthermore, as mentioned 
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above, since the time step can be larger than in 
the conventional methods, overall computational 
demands can be signiϐicantly reduced.

5. Handling Diverse Geometries: The CCR method 
efϐiciently handles unstructured meshes with 
varying cell sizes, and the VC method effectively 
processes concave hexahedral cells without risking 
inϐinite loops. It also enables efϐicient residence 
time computation by analyzing particle trajectories 
and their intersections with cell boundaries. These 
techniques effectively manage moving or deforming 
meshes without necessitating re-registration of cells, 
utilizing the inverse deformation function to ensure 
robustness.

Additiona lly, when the area (in 2D) or volume (in 
3D) of a cell is very small or geometrically slender, the 
computational results may become prone to numerical 
errors. However, such issues are not unique to the 
present method and are also commonly encountered 
in the conventional approaches. As mentioned earlier, 
challenges—including handling concave cells, accurately 
computing the residence time of particles within each 
crossed cell, and implementing moving meshes will be 
addressed in future work.

By striking a balance between accuracy and 
computational efϐiciency, the VC and CCR methods 
demonstrate high effectiveness in complex simulations 
that require precise particle search and positioning within 
complex three-dimensional environments. These methods 
offer wide applicability, particularly in domains such as 
the study of rareϐied gases, the behavior of solvents, and 
the dynamics of diesel sprays in internal combustion 
engines. Additionally, they play a crucial role in modeling 
molecular interactions in nanoscale ϐluid ϐlows, analyzing 
the movement of granular materials, and solving the gas-
phase equations governing multiphase ϐlow dynamics. 
Their versatility and computational efϐiciency make them 
indispensable tools for tackling intricate physical and 
engineering challenges.
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