
011

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Abstract

This study introduces a simple yet effective computational method for particle search and positioning in 3D cells by combining the newly proposed Volume Comparison
(VC) method with the Cartesian Cell Registration (CCR) method. Our method achieves a remarkable speed-up ratio of 9,675 relative to the brute-force search in rarefi ed
gas fl ow simulations using the DSMC method with 61,047 computational 3D cells. Furthermore, our results indicate that the proposed method is approximately 4.45 to
5.73 times faster than the conventional methods, owing to the reduced number of cells requiring search. Moreover, it eliminates the time step restrictions inherent in the
conventional methods by permitting particles to move beyond adjacent cells, this permits larger time steps, further reducing computational cost. Additionally, our method
precisely performs particle search and positioning—determining whether a particle is located within three-dimensional convex or concave cells, regardless of type—
and facilitates effi cient computation of residence times by geometrically analyzing particle trajectories and their intersections with cell boundaries. These techniques
effectively address challenges such as handling moving or deforming meshes without necessitating re-registration, employing the inverse deformation function to ensure
robustness. By combining accuracy with computational effi ciency, the VC and CCR methods prove highly effective for advanced simulations involving particle search and
positioning in complex 3D environments, such as rarefi ed gases, solvents, diesel sprays in engines, molecules in nanoscale fl ows, the dynamics of granular materials, and
the gas-phase equations of multiphase fl ows.

Review Article

A Highly Effi cient
Computational Method for
Particle Search and Positioning
in 3D Cells: The Volume
Comparison and Cartesian Cell
Registration Approach
Yoshifumi Ogami*
Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577,

Japan

Received: 31 March, 2025
Accepted: 07 April, 2025
Published: 08 April, 2025

*Corresponding author: Yoshifumi Ogami, Department
of Mechanical Engineering, Ritsumeikan University, 1-1-
1 Noji-Higashi, Kusatsu 525-8577, Japan,
E-mail: ogami@se.ritsumei.ac.jp

ORCiD: https://orcid.org/0000-0002-2184-5921

Keywords: Particle positioning; Particle tracking;
Rarefi ed gas fl ow; DSMC; Volume comparison
method; Cartesian cell registration method

Copyright License: © 2025 Ogami Y. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

https://www.engineegroup.us

1. Introduction

Engineering ϐluid dynamics simulations frequently
involve tracking discrete elements, such as particles in
rareϐied gases [1-3], solvents, diesel sprays in engines
[4,5], molecules in nanoscale ϐlows [6], or the dynamics
of granular materials [7,8]. Accurately identifying the
computational cell a particle occupies is essential for
monitoring its movement over time. Moreover, determining
the residence time of a particle in each cell it traverses
is critical for calculating source terms in the gas-phase
equations of multiphase ϐlows [9-13].

Determining whether a particle resides within a

polygonal cell (serving as a computational cell), the
conventional methods sequentially track the particle from
its starting cell to its ending cell, restricting movement
beyond adjacent cells. As a result, a small time step size is
required. For each cell, this process relies on multiple if-
statements to evaluate the particle's position relative to
the cell's edges, vertices, and intersections [6,9,10,14-16],
requiring at least as many evaluations as the product of the
number of edges (in 2D) or faces (in 3D) and the number of
cells the particle crosses.

Compared to two dimensions, extending computational
methods to three dimensions [17,18] substantially
increases the computational burden and complicates code

012

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

management, particularly in 3D simulations. Furthermore,
if the cell is concave, the algorithm may enter an inϐinite
loop [7]. For moving cells, it is crucial to ensure that the
cell does not shift to such an extent that the particle moves
beyond a single neighboring cell from its original position
[7].

To improve computational efϐiciency for searching
cells, and by taking advantage of the Cartesian grid system,
Liang, et al. [19] proposed a DSMC method [1-3] that
combines two levels of Cartesian grid systems combined
with an unstructured triangular grid system. However, as
pointed out by Wang Z. et al. [20], although this method
improved computational efϐiciency, several calculations
must be performed separately at the junction between the
two types of grids, which is relatively tedious.

Moreover, the DSMC (Direct Simulation Monte Carlo)
method is a numerical technique used to simulate gas
ϐlows, particularly under rareϐied (low-density) conditions
where traditional Navier–Stokes equations become invalid.
Originally developed by G.A. Bird in the 1960s, DSMC has
become a standard tool for studying non-equilibrium gas
dynamics, such as those encountered in hypersonic ϐlows,
vacuum systems, micro/nano-scale ϐlows, and upper-
atmosphere physics.

Wang C, et al. [21] divided the computational domain into
various rectangular regions within Cartesian grid systems
that contain a small number of triangular cells. The particle
trajectory is tracked by ϐirst searching the rectangular
regions and then the triangular cells. This method also
enhanced computational efϐiciency. However, the grid
conϐiguration is limited to triangular cells, and searching
for cells in small areas can still be time-consuming.

Wang Z, et al. [20] also proposed the Background
Cartesian Grid Positioning (BCP) technique for two-
dimensional computations. In this technique, a structured
grid system is superimposed onto a layer of a background
Cartesian grid system, and the geometric relationship
between the structured and background grids is established
in advance to limit the cells that need to be searched later.
Although their results showed a signiϐicant decrease in the
computational time required for particle positioning, BCP is
limited to structured grid systems. Furthermore, applying
BCP to three-dimensional grids may be challenging.

To address these challenges, more efϐicient and simple
methods using a distinctly different approach have been
proposed: the Cartesian Cell Registration (CCR) method
and the Area Comparison (AC) method [22,23]. The
CCR method signiϐicantly reduces the number of cells to
be searched by associating structured or unstructured
computational cells with Cartesian cells (rectangles or
squares), completely eliminating the need for sequential

cell searches from the starting cell to the ending cell. The
AC method simpliϐies particle localization by using a single
if-statement for area comparison, while the conventional
methods require multiple if-statements, often exceeding the
number of edges (2D) or faces (3D) per cell. Moreover, the
conventional methods involve fairly intricate programming
that demands careful geometric analysis of the particle’s
position relative to edges or faces. The CCR and AC methods
were applied to rareϐied gas ϐlow around a two-dimensional
circular cylinder, signiϐicantly reducing computational time
compared to the brute-force method [23].

In this paper, the AC method is extended to three
dimensions, leading to the development of the Volume
Comparison (VC) method. The CCR and VC methods are
applied to three-dimensional rareϐied gas ϐlow around a
sphere using the DSMC method [1-3], achieving a speed-
up ratio of 9,675 with 61,047 computational 3D cells.
The speed-up ratio scales linearly with the number of
cells. Furthermore, the results indicate that our method
is approximately 4.45 to 5.73 times faster than the
conventional methods due to the reduced number of cells
that must be searched. Additionally, the proposed method
eliminates the time step restrictions inherent in the
conventional methods by permitting particles to traverse
nonadjacent cells, this permits larger time steps, further
reducing computational cost.

This paper also explores how both the CCR and VC
methods track particle paths from the starting cell to the
ending cell to compute residence times in each cell. It
further discusses aspects related to concave and moving
cells.

Cartesian cell registration method

2.1 Three-dimensional mesh around a sphere

Before explaining the three-dimensional CCR method, a
3D mesh is created around a sphere with a radius of 0.05
m. The process begins by generating a two-dimensional
mesh around a semicircle as the base mesh (Figure 1), with
intentionally small radial (Nr = 10) and circumferential
(Nc = 10) divisions to clearly visualize the cells. This base
mesh is then rotated around the x-axis (horizontal axis in
Figure 1) to create a rotationally symmetric 3D mesh with
11 circumferential divisions (Nx = 11). The side, top, front,
and isometric views are shown in Figures 2-5. Each 3D cell
is assigned a number. Periodic boundary conditions are
applied in the calculations to perform DSMC simulations
over the entire spherical domain. This type of boundary
condition is commonly used in ϐluid dynamics simulations.
When a particle exits one side of the computational domain
(e.g., the plane at z=0 with y>0), it re-enters from the
opposite side (e.g., the plane at z=0 with y<0), effectively
causing the domain to "wrap around" on itself.

013

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

Let us consider a mesh around a circular cylinder
(shown in red in Figure 6) to be registered with a Cartesian
mesh (black). The target mesh (red) can adopt structured,
unstructured, or polygonal conϐigurations, and supports
both sequential and arbitrary cell numbering. Consider a
square Cartesian cell S0 with a cell width W (Figure 7). All
red cells in the target mesh with centers within a distance
R from the center of S0 are registered with S0 . This process
is repeated for all Cartesian cells and target red cells. The
Cartesian cell containing a target particle can be identiϐied
through straightforward geometric calculations using the
particle's coordinates. From there, the corresponding target
cell is determined by searching only the cells registered
with the Cartesian cell. The cell where the particle exists
is then determined using the AC method, as described in
Chapter 3.

Next, the Cartesian Cell Registration (CCR) method for
three-dimension is explained. In Figure 8, a 3D cell (red)
of the thr ee-dimensional mesh and the three-dimensional
Cartesian cells (blue) are shown. Let the width and height of
the projected area of the red cell be denoted as dW and dH,
respectively. Similarly, let the depth of this cell be dD (not
shown in this ϐigure). Then, this red cell is registered with
the Cartesian cells in the box of dW, dH, and dD. While not

2.2 Cartesian Cell Registration (CCR) method for three
dimensions

References [22,23] introduce the Cartesian Cell
Registration (CCR) method for two-dimensional meshes to
reduce the number of cells that need to be searched. Before
extending this method to three dimensions, we will brieϐly
explain the two-dimensional CCR method.

Figure 1: Two-dimensional mesh around a semicircle.

Figure 2: Side view of the 3D mesh around a hemisphere.

Figure 3: Top view of the 3D mesh around a hemisphere.

Figure 4: Front view of the 3D mesh around a hemisphere.

Figure 5: Isometric view of the 3D mesh around a hemisphere.

014

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

ideal, the method registers some unrelated Cartesian cells
for simplicity are also registered. However, it simpliϐies the
computer algorithm. In a real implementation, dW, dH, and
dD are set slightly larger to ensure that every 3D cell in the
three-dimensional mesh is registered without fail.

In Figures 9-12, the 3D cells (black) in the three-
dimensional mesh, the Cartesian cells (blue), and the
hemisphere (green) are shown. For clarity, the size of the
3D cells is intentionally set larger. To demonstrate how
the CCR method works, Figures 13-16 show examples of
the registered 3D cells (red) within a single Cartesian cell

Figure 6: Target mesh (red) and Cartesian mesh (black).

Figure 7: The red cells within the blue circle are registered to the black Cartesian
cell S0.

Figure 8: A 3D cell (red) is registered to the Cartesian cells (blue) within a box
(green) defi ned by dW, dH, and dD.

Figure 9: Side view of the 3D cells (black), Cartesian cells (blue), and hemisphere
(green).

Figure 10: Top view of the 3D cells (black), Cartesian cells (blue), and hemisphere
(green).

Figure 11: Front view of the 3D cells (black), Cartesian cells (blue), and hemisphere
(green).

(blue). Note that all red cells are registered with one or
more Cartesian cells.

When a particle moves into this Cartesian cell,
its location can be easily determined through simple
calculations. The target 3D cell where the particle resides
is then identiϐied within the red registered cells using the
VC method explained in Chapter 3, rather than searching

015

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

through all 3D cells in the mesh. This signiϐicantly reduces
the computational time, as demonstrated in Section 4. Note
that our method allows the particle to be at an arbitrary
position, unlike the conventional methods, which require it
to remain within adjacent cells.

The number of registered red cells in the above example
is 292. However, as demonstrated in Chapter 4, the optimal
average number of registered 3D cells is approximately
four, which can be achieved using smaller and more
numerous Cartesian cells.

3 Area comparison method and volume compari-
son method

3.1 Area comparison method for two dimensions

When searching for cells in a two-dimensional region
using the CCR method presented in Chapter 2, it is
necessary to identify the cell containing the target particle.
To facilitate this, the Area Comparison (AC) method was
introduced [22,23]. As mentioned in the Introduction,
the conventional methods require multiple if-statements,
often exceeding the number of edges (2D) or faces (3D) per
cell. Moreover, they involve fairly intricate programming
that demands carefully analyzing the particle’s geometric

relation to cell boundaries. In contrast, the AC method
requires only a single if-statement.

Before extending the AC method to three dimensions,
the two-dimensional method is brieϐly explained below.

Consider a target particle P₁ and a quadrilateral cell
C₁ with area S as shown in Figure 17. Let S₁ be the sub-
area of the triangle formed by vertices v₁, v₂ of C₁, and the
particle position P₁. Similarly, let S₂, S₃, and S₄ represent
the sub-areas of triangles ΔP₁v₂v₄, ΔP₁v₃v₄, and ΔP₁v₁v₃,

Figure 12: Isometric view of the 3D cells (black), Cartesian cells (blue), and
hemisphere (green).

Figure 13: Side view of a Cartesian cell (blue), registered 3D cells (red), and the
hemisphere mesh (gray).

Figure 14: Top view of a Cartesian cell (blue), registered 3D cells (red), and the
hemisphere mesh (gray).

Figure 15: Front view of a Cartesian cell (blue), registered 3D cells (red), and the
hemisphere mesh (gray).

Figure 16: Isometric view of a Cartesian cell (blue), registered 3D cells (red), and the
hemisphere mesh (gray).

016

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

respectively. The presence of the particle within C₁ can be
veriϐied using the following simple condition:

If S = S₁ + S₂ + S₃ + S₄, then the particle P₁ exists within
the cell C₁ (Figure 17(a)).

Moreover, if S = S₁ + S₂ + S₃ + S₄ and S₁ = 0, then the
particle lies on the edge v₁v₂. Additionally, if S = S₁ + S₂
+ S₃ + S₄, S₁ = 0, and S₂ = 0, then the particle is located at
vertex v₂. Finally, if S ≠ S₁ + S₂ + S ₃ + S ₄, then the particle
lies outside C₁ (Figure 17(b)). This method can easily be
extended to any convex polygonal cell.

As mentioned in the Introduction, if the cell is concave,
the program may risk entering an inϐinite loop [7]. However,
the presence of a particle within a concave quadrilateral
cell, as illustrated in Figure 18, can be veriϐied using the
following straightforward condition:

If the particle lies within triangle Δv₁v₃v₄ but does not
lie within triangle Δv₁v₂v₃, then the particle exists within
the concave cell v₁v₂v₃v₄. In the formulation of the AC
method, if

ΔP₁v₁v₃ + ΔP₁v₃v₄ + ΔP₁v₁v₄ = Δv₁v₃v₄

And

ΔP₁v₁v₃ + ΔP₁v₂v₃ + ΔP₁v₁v₂ ≠ Δv₁v₂v₃,

then the particle exists within the concave cell v₁v₂v₃v₄.

3.2 Volume Comparison method for three dimensions

The AC method can be easily extended to 3D by
comparing volumes instead of areas. This approach is
referred to as the Volume Comparison (VC) method, as
detailed in the following discussion.

As shown in Figure 19, consider a convex hexahedral
cell with vertices v₁ to v₈ and a particle at P₁. Six square
pyramids can be created, each with a face as its base and
the particle as its apex. Speciϐically, V0 refers to the volume
of the convex hexahedral cell deϐined by vertices v₁ through
v₈, while V1 corresponds to the volume of the square
pyramid formed by points P₁, v₁, v₂, v₆, and v₅, and so forth
for the subsequent volumes. Apparently, if V1 + V2 + V3 + V 4

+ V5 + V6 = V0, then the particle exists within the hexahedral
cell. Under this condition:

1. If one of the six sub-volumes (V1–V6) equals 0, the
particle lies on the base (surface) of the square
pyramid.

2. If two of the sub-volumes equal 0, the particle lies on
an edge of the hexahedral cell.

3. If three of the sub-volumes equal 0, the particle lies on
a vertex of the hexahedral cell.

Moreover, as shown in Figure 20, consider a concave
hexahedral cell with vertices v₁ to v₈ and a particle at P₁.
If the particle is inside the triangular prism formed by the
vertices v₁, v₂, v₄, v₅, v₆, and v₈, and if the particle is not
inside the triangular region formed by the vertices v₃, v₂,
v₄, v₇, v₆, and v₈, then the particle exists within the concave
hexahedral cell. The existence of the particle within a
triangular prism mentioned above can be veriϐied by
comparing the volumes as follows:

A triangular prism with vertices v₁ to v₆ and a particle
at P₁ is shown in Figure 21. Let the sub-volumes of two
triangular pyramids (the vertices P₁, v₁, v₂, v₃ and P₁, v₄,
v₅, v₆) be V1 and V2. Let the sub-volumes of three square
pyramids (the ver tices P₁,v₁,v₄,v ₆,v ₃, P₁,v₁,v₄,v₅,v₂, and
P₁,v₂,v₅,v₆,v₂) be V3, V4, and V5, respectively. The volume of
the entire triangular prism is V0. The particle exists inside
the triangular prism if the following condition holds:

Figure 17: Area comparison method for positioning a particle.
(a) The particle is inside C1 when S = S1 + S2 + S3 + S4
(b) The particle is outside C1 when S S1 + S2 + S3 + S4

Figure 18: A concave cell.

Figure 19: Convex hexahedron cell with vertices v1 to v8 and a particle at P1.

017

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

V1 + V2 + V3 + V4 + V5 = V0.

The VC method readily generalizes to any polyhedral
geometry, not just those shown here, including concave
hexahedral cells, which may cause the program to enter an
inϐinite loop [7]. Note that when the area (in 2D) or volume
(in 3D) is very small or slender, the computational results
may be susceptible to errors. However, such issues are also
likely to occur in the conventional methods.

In this section, we have introduced the VC method for
three dimensions and the concept of handling concave cells
using the VC method. In the next chapter, the computational
results and evaluation for convex cells in a 3D mesh, as
shown in Figure 2-5, will be presented, while those for
concave cells will be discussed in a future paper.

4. Computational results and evaluations

4.1 Comparison with other simulations

Before evaluating the computational efϐiciency of the
CCR and VC methods, we compare the results of our DSMC
simulation with those of [24] using identical parameters:
neon as the gas, Mach number Ma = 2, rarefaction parameters
δ = 1 and δ = 30, and a free-stream temperature T = 300
K. For our simulations, the number of radial divisions is
Nr = 40, the circumferential divisions are Nc = 50, and the
axial divisions are Nx = 15, resulting in a total cell count
of 30,000. Our computer is equipped with an Intel Core

i9-14900KF CPU (3.2–6.0 GHz) and 128 GB of memory.
No parallel computing nor large-scale computations were
performed.

• The stability criterion for the DSMC (Direct
Simulation Monte Carlo) method differs from
classical numerical stability conditions such as the
Courant–Friedrichs–Lewy (CFL) condition used in
conventional CFD. To ensure stable and accurate
DSMC simulations, the following guidelines should
be followed:The time step Δt must be signiϐicantly
smaller than the local mean collision time τ to
prevent multiple collisions within a single time step.

• The computational cell size Δx should be smaller
than or comparable to the local mean free path λ,
ensuring that collisions occur only between nearby
particles.

• Each cell should contain a sufϐicient number of
particles—typically at least 10 to 30—to provide
statistically meaningful collision sampling.

• Particle displacement within a time step should be
smaller than the cell size, i.e., particles should not
travel farther than one cell in a single time step.

Furthermore, the statistical error scaling for DSMC,
as discussed in [2], demonstrates the characteristic 1 / N
behavior of statistical noise, where N is the number of
simulated particles. In our simulations, the total number of
particles is approximately 1.3 million, which is sufϐicient to
ensure a low level of statistical error.

In Figures 22,23, the steady-state temperature and
velocity distributions at δ = 30 are presented on the x-y
plane and x-z plane, respectively. In Figures 24, comparisons
of the temperature distributions from [24] (upper) and
our results (lower) at δ = 1 and δ = 30 demonstrate good
agreement. Speciϐically, in both cases, when the rarefaction
parameter is smaller (δ = 1), the high-temperature region
in front of the sphere becomes thicker along the x-direction
and narrower along the y-direction. In contrast, for a larger
rarefaction parameter (δ = 30), the high-temperature
region becomes thinner in the x-direction and broader in
the y-direction.

The observed differences—speciϐically, the coarser
temperature distribution downstream of the sphere in
our results compared to those of [24]—may be attributed
to the smaller number of particles and cells used in our
simulations, as well as the size of the computational
regions. However, since the primary objective of this paper
is to demonstrate the computational efϐiciency of the CCR
and VC methods rather than to improve computational
accuracy, this discrepancy is considered acceptable.

Figure 20: Concave hexahedron cell with vertices v1 to v8 and a particle at P1.

Figure 21: Triangular prism cell with vertices v1 to v6 and a particle at P1.

018

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

This sect ion focuses on validating our simulation
results rather than comparing computational efϐiciency.
An estimation of computational cost between the CCR and
VC methods and the conventional methods is provided in
Section 4.4.

4.2 Computational effi ciency of the CCR method and
VC method

To examine the computational efϐiciency, or the
speed-up ratio, of the CCR and VC methods, the following
simulations were conducted.

A three-dimensional mesh around a sphere was created
using the parameters Nr = 51, Nc = 63, and Nx = 19, resulting
in a total cell count of 61,047. The three-dimensional
Cartesian cells, within which the cells around the sphere
are registered, are all cubic. The edge size of a Cartesian
cell ranges from 2.2 × 10⁻³ m to 1.1 m, as shown in Table
1. When the edge size is as large as 1.1 m, all cells around
the sphere are registered within a single Cartesian cell. As
the edge size of the Cartesian cell decreases, the average
number of registered 3D cells within each Cartesian cell
also decreases, which in turn reduces the number of cells
to search and lowers the CPU time required for particle
searching.

When the edge size is 1.1 m (where all cells around the
sphere are registered within a single Cartesian cell), the
average time for the movement and searching of a single
particle is considered equivalent to that of the brute-force
method. This brute-force approach serves as a benchmark
scenario where no speed-up techniques are applied. The
speed-up ratio is deϐined as the time taken by the brute-
force method divided by the time required when using
smaller Cartesian cell sizes. For each simulation, the
total number of particles is approximately 1.3 million.
Consequently, the maximum speed-up ratio is obtained as
9,675 when the average number of registered 3D cells in a
Cartesian cell is 3.95.

The comparison with another benchmark, speciϐically
the conventional methods, is discussed in Section 4.4.

Tables 2 and 3 also present the results for fewer three-
dimensional cells around a sphere with the following
parameters: Nr=40, Nc=50, and Nx=15, resulting in a
total cell count of 30,000, and Nr =32, Nc =40, and Nx =12,
resulting in a total cell count of 15,360. The maximum
speed-up ratio is observed at Cartesian cell sizes of 3.67 ×
10⁻³ m and 4.30 × 10⁻³ m, respectively, with the average
number of registered 3D cells in a Cartesian cell being 3.78
(former) and 3.77 (latter).

Figures 25 shows that the average number of 3D cells
registered in a Cartesian grid increases as the size of the
Cartesian cells increases for three different 3D cell counts
around a sphere. Additionally, for a given Cartesian cell
size, the average number of registered 3D cells increases
with the 3D cell count around the sphere.

Figure 22: Temperature distribution at δ=30 on the x-y plane and x-z plane.

Figure 23: Velocity distribution at δ=30 on the x-y plane and x-z plane.

Figure 24: Comparison of temperature distributions from [24] (upper) and our
results (lower) at δ = 1 and δ = 30.

019

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

Figures 26 also illustrates that the average CPU time
for moving and searching a single particle decreases with
decreasing Cartesian cell size but increases with higher cell

Table 1: Computational Efϐiciency of the CCR and VC Methods for 61,047
Cells (Nr = 51, Nc = 63, Nx = 19).

Cartesian
cell size

(m)

Cartesian
cell number

Average number
of registered
3D cells in a

Cartesian cell

Mean Time
required for

searching a Single
Particle (s)

Speed-
up ratio

1.1 1 61047.00 5.82×10⁻³ 1

5.50×10⁻1 8 16595.25 1.63×10⁻³ 4

1.10×10⁻1 1000 244.52 3.48×10⁻5 167

3.24×10⁻2 39304 23.91 2.68×10⁻6 2172

2.20×10⁻2 125000 13.87 1.67×10⁻6 3494

1.10×10⁻2 1000000 6.88 8.83×10⁻7 6598

5.50×10⁻3 8000000 4.57 6.42×10⁻7 9071

3.67×10⁻3 27000000 3.95 6.02×10⁻7 9675

2.75×10⁻3 64000000 3.67 6.25×10⁻7 9313

2.20×10⁻3 125000000 3.50 6.56×10⁻7 8885

counts around the sphere. Moreover, Figures 27 presents
the speed-up ratio as a function of Cartesian cell size. It is
observed that the maximum speed-up ratio occurs for all
three cell counts around the sphere.

Finally, Figures 28 shows that the maximum speed-up
ratio increases linearly with the cell number around the
sphere. This demonstrates that the efϐiciency of the CCR
and VC methods increases with the number of cells and
suggests they will be more efϐicient in larger-scale three-
dimensional DSMC simulations compared to those in this
study.

Table 2: Computational Efϐiciency of the CCR and VC Method for 30,000 cells
(Nr = 40, Nc = 50, Nx=15).

Cartesian
cell size

(m)

Cartesian
cell number

Average number
of registered
3D cells in a

Cartesian cell

Mean Time
required for

searching a Single
Particle (s)

Speed-
up

ratio

1.10 1 30000.00 2.86×10⁻3 1

5.50×10⁻1 8 8339.50 8.21×10⁻4 3

1.10×10⁻1 1000 142.74 2.02×10⁻5 142

4.23×10⁻2 16576 24.82 2.94×10⁻6 973

2.20×10⁻2 125000 10.66 1.33×10⁻6 2150

1.10×10⁻2 1000000 5.93 8.01×10⁻7 3570

5.50×10⁻3 8000000 4.25 5.99×10⁻7 4772

3.67×10⁻3 27000000 3.78 5.87×10⁻7 4873

2.75×10⁻3 64000000 3.55 6.17×10⁻7 4635

2.20×10⁻3 125000000 3.43 6.52×10⁻7 4390

Table 3: Computational Efϐiciency of the CCR and VC Method for 15,360 cells
(Nr = 32, Nc = 40, Nx=12).

Cartesian
cell size

(m)

Cartesian
cell

number

Average number of
registered 3D cells
in a Cartesian cell

Mean Time
required for

searching a Single
Particle (s)

Speed-
up

ratio

1.10 1 15360.00 1.47× 10⁻3 1

5.50×10⁻1 8 4373.25 3.98× 10⁻4 4

6.88×10⁻2 4096 36.96 4.74× 10⁻6 310

5.50×10⁻2 8000 25.64 3.10× 10⁻6 474

3.44×10⁻2 32768 13.62 1.74× 10⁻6 845

1.72×10⁻2 262144 6.98 9.14× 10⁻7 1608

8.59×10⁻3 2097152 4.70 6.71× 10⁻7 2189

4.30×10⁻3 16777216 3.77 5.77× 10⁻7 2546

3.67×10⁻3 27000000 3.64 5.79× 10⁻7 2536

2.75×10⁻3 64000000 3.46 6.39× 10⁻7 2300

1 0 -2 1 0 -1 1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Ca rtesian cell size

 sllec
D

3 fo re
b

m
u

n e
garev

A
llec

naisetra
C a

ni
deretsi

ger

 6 1 , 0 4 7 cells

 3 0 , 0 0 0 cells

1 5 , 3 6 0 cells

Figure 25: Average number of 3D cells registered in a Cartesian cell.

1 0 -2 1 0 -1 1 0 0

1 0 -6

1 0 -5

1 0 -4

1 0 -3

Cartesian cell size

 g
nivo

m rof deri
uqer e

mit
UP

C egarev
A

elcitrap elg
nis a g

ni
hcraes d

na

 6 1 , 0 4 7 cells

 3 0 , 0 0 0 cells

 1 5 , 3 6 0 cells

(s)

Figure 26: Average CPU time required for moving and searching a single particle.

1 0 -2 1 0 -1 1 00
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Cartesian cell size

oita
R

p
U-

dee
p

S

 61,047 cells
 30,000 cells

 15,360 cells

Figure 27: Speed-up ratio for computational performance.

020

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

4.3 Effect of cartesian cell size on algorithm effi ciency
and computational performance

The efϐiciency of the algorithm depends on the Cartesian
cell size—that is, the average number of registered 3D
cells within a Cartesian cell. It is assumed that the optimal
Cartesian cell size should be as small as possible, ideally
containing only a single registered 3D cell—although this
may not always be feasible. In such a case, each Cartesian
cell would lie entirely within a single 3D cell and could be
identiϐied based on the particle's position using simple
arithmetic calculations. Consequently, the corresponding
3D cell could be identiϐied directly, eliminating the need
for search operations, as only one 3D cell is registered
within each Cartesian cell. However, if the Cartesian cells
are large and contain multiple registered 3D cells, search
time increases. In the extreme case where a Cartesian
cell is large enough to encompass all 3D cells, the method
essentially reverts to a brute-force search, as previously
explained. In these simulations, the minimum computation
time occurs when the average number of registered 3D
cells within a Cartesian cell is approximately four instead
of one, which was noted earlier. This may be because, as
Cartesian cell count increases, memory usage and access
time rise accordingly.

Furthermore, in these simulations, the ratio of
the maximum to minimum 3D cell volume sizes is
approximately 26,000. This demonstrates that the CCR
method is capable of handling unstructured meshes with
substantial variations in cell size.

4.4 Comparison of the CCR and VC methods with
conventional methods

Although the conventional methods are not used in this
paper, their computational cost can be estimated as follows.

Since the computational cost of calculating sub-areas
(sub-volumes) in the AC (VC) method is comparable to
that of evaluating edge (face) products in the conventional
methods, the primary factor inϐluencing computational

cost is the number of cells that need to be checked. In the
conventional methods, the cells checked for the presence of
a particle that has moved during a small time step are the
adjacent cells of the one where the particle was previously
located. For example, the number of cells to check is 9 in
a 2D mesh (Figure 1) and 27 in a 3D mesh (Figures 2-5),
including the cells that contain the original positions of the
particles. Note that these values represent the maximum
number of attempts required for particle search; however,
in most cases, the particle is found before reaching this
limit.

As demonstrated, the number of cells in a 3D mesh
varies depending on the size of the Cartesian grid cells. The
optimal number of cells is found to be around 4, which is
smaller than 29 in the conventional methods, as mentioned
above. As shown in Table 1, when the average number of
registered 3D cells per Cartesian cell is 23.91—close to
the 29 in the conventional methods; the speed-up ratio is
2172. The maximum speed-up ratio reaches 9675 when the
average number of registered cells is 3.95. This indicates
that our method is approximately 4.45 times faster than
the conventional methods, based on the ratio 9675 to
2172. Similar ratios can be derived from Tables 2 and 3,
where the values are 4873/973 = 5.01 and 2546/474 =
5.73, respectively. Note that the number of cells to check
is unlikely to increase in our method, even for 3D cells
with a large number of faces, whereas it increases in the
conventional methods.

1. Our method also enables longer time steps,
unlike conventional methods, as it permits particles to
move beyond adjacent cells, further reducing the overall
computational cost. If a particle is near the edge or
vertex of a cell, there is a high likelihood that it will move
beyond adjacent cells, even with a small time step. This is
illustrated in Figure 29, where a particle initially at X(t) in
Cell A moves directly to Cell M within a single time step.
In the conventional methods, the particle from Cell A is
ϐirst searched for in the adjacent cells (Cells B–I). If it is
not found, the search extends to the next set of adjacent
cells (Cells J–M), increasing computational cost. To avoid

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

Cell n u m b er arou n d a sp h ere

oitar
p

u-
dee

ps
m

u
mixa

M

Figure 28: Maximum speed-up ratio as a function of the number of cells around a
sphere.

Figure 29: A particle moving beyond adjacent cells.

021

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

this repeated search, the time step must be reduced—
sometimes more than necessary—which can signiϐicantly
increase overall computational time. However, our method
seamlessly handles particles moving beyond adjacent cells,
eliminating the aforementioned time step restriction and
thereby reducing the overall computational cost.

5. Auxiliary considerations

In this chapter, only the concept of obtaining the
residence time of a particle in each cell it crosses and that of
performing calculations with a moving mesh using the CCR
and AC methods are introduced. The actual computations
using these methods will be presented in a future paper.

5.1 Residence time of a particle in each cell it crosses

As ment ioned in the Introduction, determining the
particle's residence time in each cell it traverses is essential
to compute source terms in gas-phase multiphase ϐlow
equations. This section explains the method in two
dimensions, with its extension to three dimensions being
straightforward.

As shown in Figure 30, a particle at time t is located at
position X(t) in Cell A and is transferred to position X(t+Δt)
in Cell E after a relatively large discrete time interval Δt. The
cell numbers for A and E can be identiϐied using the CCR
and AC methods. The path of the particle is represented by

the line segment () ()t t t+DX X and the intersection point

X1 with the vertex of Cell A is determined via geometric
calculations. Although there are ϐive intersection points
between this path and the cell’s vertices or their extensions
or the extensions of the vertices of pentagon Cell A, as
indicated by the red circles in Figure 31, the intersection

point at vertex 1 2VV is the one where either the area

01 1 2V X VD = or condition 1 1 1 2 1 2V X X V VV+ = is satisϐied.

The cell number of Cell B can be determined using the
CCR and AC methods for an imaginary particle placed at P1
in Figure 30, which is located at a small distance Δl from

the intersection point X1 toward X(t+Δt) ()t t+DX on the

line segment () ()t t t+DX X . By repeating this process until

the ϐinal Cell E, the path segment crossing each cell and
the particle's residence time in each traversed cell can be
determined.

5.2 Moving mesh

In this section, the CCR and AC methods are explained
for use even when the mesh is moving or deforming. The
method is described in two dimensions, and its extension
to three dimensions is straightforward.

In almost all cases, a moving mesh is described

Figure 30: Particle path from Cell A to Cell E.

Figure 31: Five intersection points (red circles) between the particle's path and the
vertices or the extensions of the vertices of Cell A.

by mathematical equations, such as (, ,)x f tx h= and
(, ,)y g tx h= , where x and y denote the coordinates of

2D cells vertices at time t, and ξ and η are computational
coordinates. This formulation allows for the mapping
between the computational domain and the physical
domain, facilitating the simulation of dynamic meshes in
numerical analyses. For example, consider a simple case
where the two-dimensional mesh moves or deforms only in

the x-direction, described by the equation 2
(3)x tx= + . In

Figure 32(a), the two-dimensional mesh around a semicircle
(black), the Cartesian mesh (blue), and a particle (red) at
time 0 are shown. Additionally, Figure 32(b) displays the
meshes and the particle at time t = 1. To demonstrate the
validity of our methods, a large deformation is intentionally
introduced. It can be observed that the meshes are
compressed for small x -coordinates and expanded for large
x-coordinates. Even though the Cartesian cell width varies
with x -coordinates, the CCR method can still be applied to
this deformation, as detailed in the following discussion.

In this example, the initial coordinates of the particle

are (,) (0.85, 0.25)p px y = , and the width of the Cartesian

cell is Δx = 0.2. This gives the Cartesian cell number as

int(/) 1 5px xD + = . Therefore, the cell containing the

particle can be identiϐied by examining the cells registered
with the ϐifth Cartesian cell from the left.

022

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

(b) After deformation (t=1)

(a) Before deformation (t=0)

Figure 32: Deformation of the mesh around a semicircle (black) and the Cartesian mesh (blue), showing the particle at its initial position (red) and its transferred position
(green).

After deformation, the Cartesian cell number can be

determined using the inverse function of 2
(3)x tx= + ,

namely, 1
/ (3)f x t

- = + . The Cartesian cell number is
then given by:

1 0.85(,)
int 1 int 1 int 1 343

0.2

pxf x t

tx
x

-

+ = + = + =+D
D

æ ö æ ö÷æ ö ÷ç ç÷ ÷÷ çç ç÷ ÷÷ çç ç÷ ÷÷ çç ç÷ ÷÷ ç÷ç ç÷ ÷è ø ç ÷ç÷ç è øè ø

This means that the Cartesian cell registration remains
valid even after mesh deformation. Instead, the initial
information of the CCR method can still be used after
the mesh deformation. Therefore, the cell containing the
particle at t =1 can be identiϐied by examining the cells
registered with the third Cartesian cell from the left. This
method can be extended to simultaneously account for
deformation in both the y- and z-directions.

Importantly, this method imposes no restrictions on
particle movement across multiple cells. This addresses
a limitation noted in [7], where particle movement was
restricted. As shown in Figure 32(b), the particle can be
regarded as moving from the green circle, which represents
the transferred particle with the mesh, to the red circle,
crossing multiple cells.

6. Conclusion

The contributions and key ϐindings of the CCR and VC
methods highlighting key advantages over conventional
approaches:

1. Simpli ied Implementation: When implementing
particle search code from scratch, the VC method
signiϐicantly simpliϐies the process compared to

the conventional methods because it requires
only a single if-statement per search, whereas
the conventional methods require more than the
number of edges (in 2D) or faces (in 3D) per cell.
Additionally, they involve moderately intricate
calculations that demand careful consideration of
the geometric relationship between the particle’s
position and edges or faces.

2. Optimized Search Ef iciency: The CCR method
reduces the number of cells that need to be searched
for particles. In a 3D mesh, this number depends on
the Cartesian grid cell size, with the optimal number
found to be around four—signiϐicantly fewer than
the 27 required in the conventional methods for
our 3D mesh. As a result, computational efϐiciency
improves. Additionally, even for 3D cells with a
large number of faces, the number of cells to check
remains relatively stable in our method, whereas it
increases in the conventional methods.

3. Elimination of Time Step Constraints: By
combining the CCR and VC methods, the traditional
time step restriction in the conventional methods—
requiring it to be small enough to prevent a particle
from moving beyond adjacent cells—is eliminated.
This allows for larger time steps, thereby signiϐicantly
enhancing computational performance.

4. Computational Speed-Up: By integrating the CCR
and VC methods, achieves a 9,675-fold speed-up over
brute-force methods with 61,047 computational
3D cells. Additionally, the reduced number of cells
that must be searched indicates that our method
is approximately 4.45 to 5.73 times faster than the
conventional methods. Furthermore, as mentioned

023

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

above, since the time step can be larger than in
the conventional methods, overall computational
demands can be signiϐicantly reduced.

5. Handling Diverse Geometries: The CCR method
efϐiciently handles unstructured meshes with
varying cell sizes, and the VC method effectively
processes concave hexahedral cells without risking
inϐinite loops. It also enables efϐicient residence
time computation by analyzing particle trajectories
and their intersections with cell boundaries. These
techniques effectively manage moving or deforming
meshes without necessitating re-registration of cells,
utilizing the inverse deformation function to ensure
robustness.

Additiona lly, when the area (in 2D) or volume (in
3D) of a cell is very small or geometrically slender, the
computational results may become prone to numerical
errors. However, such issues are not unique to the
present method and are also commonly encountered
in the conventional approaches. As mentioned earlier,
challenges—including handling concave cells, accurately
computing the residence time of particles within each
crossed cell, and implementing moving meshes will be
addressed in future work.

By striking a balance between accuracy and
computational efϐiciency, the VC and CCR methods
demonstrate high effectiveness in complex simulations
that require precise particle search and positioning within
complex three-dimensional environments. These methods
offer wide applicability, particularly in domains such as
the study of rareϐied gases, the behavior of solvents, and
the dynamics of diesel sprays in internal combustion
engines. Additionally, they play a crucial role in modeling
molecular interactions in nanoscale ϐluid ϐlows, analyzing
the movement of granular materials, and solving the gas-
phase equations governing multiphase ϐlow dynamics.
Their versatility and computational efϐiciency make them
indispensable tools for tackling intricate physical and
engineering challenges.

Acknowledgment

The author gratefully acknowledges ϐinancial support
from Ritsumeikan University.

References

1. Bird GA. Direct simulation and the Boltzmann equation. Phys
Fluids. 1970 Nov;13(11):2676–81. Available from: https://doi.
org/10.1063/1.1692849

2. Bird GA. Molecular gas dynamics and the direct simulation of gas
ϐlows. Oxford: Oxford University Press; 1994. Available from: https://
doi.org/10.1093/oso/9780198561958.002.0001

3. Bird GA. The DSMC method. Version 1.2. 2018. Available from:
https://www.createspace.com/3689652

4. Gousbet G, Berlemont A. Eulerian and Lagrangian approaches for
predicting the behaviour of discrete particles in turbulent ϐlows. Prog
Energy Combust Sci. 1999;25:133–59. Available from: https://doi.
org/10.1016/S0360-1285(98)00018-5

5. Nordin N. Complex chemistry modeling of diesel spray combustion
[dissertation]. Gothenburg (Sweden): Chalmers University of
Technology; 2000. Available from: https://www.researchgate.net/
publication/296962896_Complex_chemistry_modeling_of_diesel_
spray_combustion

6. Macpherson GB, Reese JM. Molecular dynamics in arbitrary
geometries: Parallel evaluation of pair forces. Mol
Simul. 2008;34(1):97–115. Available from: https://doi.
org/10.1080/08927020801930554

7. Macpherson GB, Nordin N, Weller HG. Particle tracking in
unstructured, arbitrary polyhedral meshes for use in CFD and
molecular dynamics. Commun Numer Methods Eng. 2009;25(3):263–
73. Available from: https://doi.org/10.1002/cnm.1128

8. Hemph R, Svensson J, van Wachem BGM, Almstedt AE. Discrete
element simulations and experimental validation of particle
packing in a 5 mm chromatography column. In: Proceedings of the
6th International Conference on Multiphase Flow; 2007; Leipzig,
Germany.

9. Chen XQ, Pereira JCF. A new particle-locating method accounting
for source distribution and particle-ϐield interpolation for hybrid
modelling of strongly coupled two-phase ϐlows in arbitrary
coordinates. Numer Heat Transf B Fundam. 1999;35(1):41–63.
Available from: https://doi.org/10.1080/104077999276009

10. Vaidya AM, Subbarao PMV, Gaur RR. A novel and efϐicient
method for particle locating and advancing over deforming,
nonorthogonal mesh. Numer Heat Transf B Fundam. 2006;49(1):67–
88. Available from: https://www.tandfonline.com/doi/
abs/10.1080/10407790500344043

11. Shojaee S, Hosseini SH, Razavi BS. Computational ϐluid dynamics
simulation of multiphase ϐlow in structured packings. J Appl Math.
2012;2012:1–17. Available from: http://bit.ly/3uVEvUD

12. Parsi M, Kara M, Agrawal M, Kesana N, Jatale A. CFD simulation
of sand particle erosion under multiphase ϐlow conditions. Wear.
2017;376–377:1176–84. Available from: http://bit.ly/2OmxGKY

13. Florice NM, Andrei K. Modelling and simulation of multiphase
ϐlow applicable to processes in oil and gas industry. Chem Prod
Process Model. 2019;20170066:1–16. Available from: https://www.
degruyterbrill.com/document/doi/10.1515/cppm-2017-0066/html

14. Chen XQ. Efϐicient particle tracking algorithm for two-phase
ϐlows in geometries using curvilinear coordinates. Numer Heat
Transf A Appl. 1997;31(4):387–405. Available from: https://doi.
org/10.1080/10407789708913897

15. Zhou Q, Leschziner MA. An improved particle locating algorithm for
Eulerian-Lagrangian computations of two-phase ϐlows in general
coordinates. Int J Multiph Flow. 1999;25(4):813–25. Available from:
https://ui.adsabs.harvard.edu/link_gateway/1999IJMF...25..377T/
doi:10.1016/S0301-9322(98)00054-8

16. Chordá R, Blasco JA, Fueyo N. An efϐicient particle-locating algorithm
for application in arbitrary 2D and 3D grids. Int J Multiph Flow.
2002;28(9):1565–80. Available from: https://doi.org/10.1016/
S0301-9322(02)00045-9

17. Wu JS, Lian YY. Parallel three-dimensional direct simulation
Monte Carlo method and its applications. Comput Fluids.
2003;32(9):1133–60. Available from: https://doi.org/10.1016/
S0045-7930(02)00083-X

024

https://www.engineegroup.us/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y. A Highly Efficient Computational Method for Particle Search and Positioning in 3D Cells: The Volume Comparison and Cartesian Cell Registration
Approach. Trends Comput Sci Inf Technol. 2025;10(1):011-024. Available from: https://dx.doi.org/10.17352/tcsit.000092

18. Mallikarjun S, Casseau V, Yang G, Huang JY, Habashi WG, Gao S, et al.
HALO3D: An all-Mach approach to hypersonic ϐlows simulation, Part
II. Int J Comput Fluid Dyn. 2024;37:333–6. Available from: https://doi.
org/10.1080/10618562.2024.2306946

19. Liang J, Yan C, Du BQ. An algorithm study of three-dimensional DSMC
simulation based on two-level Cartesian coordinates grid structure.
Acta Aerodyn Sin. 2010;28:466–71. Available from: https://pubs.
cstam.org.cn/article/id/kqdlxxb_10389

20. Wang Z, Li L, Zhang B, Liu H. BCP particle positioning techniques for
DSMC method. J Aeronaut Astronaut Aviat. 2019;51:225–36. Available
from: http://dx.doi.org/10.6125/JoAAA.201909_51(3).01

21. Wang C, Cheng J, Ji L, Lu Y, Sun Y. 2-D DSMC algorithm based on
Delaunay triangles. J Tsinghua Univ Sci Technol. 2015;55:1079–86.
Available from: https://bit.ly/2OmzcwU

22. Ogami Y. Fast algorithms for particle searching and positioning by
cell registration and area comparison. Trends Comput Sci Inf Technol.
2021;6(1):7–16. Available from: https://www.engineegroup.com/
articles/TCSIT-6-132.php

23. Ogami Y, Kamran S. Fast particle search and positioning algorithms
using an efϐicient cell registration method. In: Andriychuk M, Sadollah
A, editors. Optimization algorithms - Classics and recent advances.
London: IntechOpen; 2023. p. 105–24. Available from: https://www.
intechopen.com/chapters/87415

24. Sharipov F, Volkov AN. Aerothermodynamics of a sphere in a
monatomic gas based on ab initio interatomic potentials over a wide
range of gas rarefaction: Transonic, supersonic, and hypersonic ϐlows.
J Fluid Mech. 2022;942:A17. Available from: https://doi.org/10.1017/
jfm.2022.356

https://www.peertechzpublications.org/submission

