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Abstract

Several approaches are proposed to solve global numerical optimization problems. Most of 
researchers have experimented the robustness of their algorithms by generating the result based on 
minimization aspect. In this paper, we focus on maximization problems by using several hybrid chemical 
reaction optimization algorithms including orthogonal chemical reaction optimization (OCRO), hybrid 
algorithm based on particle swarm and chemical reaction optimization (HP-CRO), real-coded chemical 
reaction optimization (RCCRO) and hybrid mutation chemical reaction optimization algorithm (MCRO), 
which showed success in minimization. The aim of this paper is to demonstrate that the approaches 
inspired by chemical reaction optimization are not only limited to minimization, but also are suitable for 
maximization. Moreover, experiment comparison related to other maximization algorithms is presented 
and discussed.
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Introduction

Optimization [1] is prevalent in various fi eld of science, 
engineering, economics and other related topics.  Since the past 
few decades, plenty optimization frameworks were proposed 
to solve existing optimization problems. They depend on using 
a predefi ned constraint which is involved in the area of the 
search space to fi nd variables of the functions to be optimized. 
In general, an optimization problem includes minimizing or 
maximizing a function systematically by selecting input values 
from a given feasible set [2]. The most famous framework is 
the evolution algorithm (EA), EA is heuristic algorithm which 
is inspired by the nature of the biological evolution and the 
social behavior of species. Several evolutionary algorithms 
have been addressed to optimization including Simulated 
Annealing (SA). It is inspired by annealing in metallurgy or 
physical process of increasing the crystal size of a material and 
reducing the defects through a controllable cooling procedure 
[3]. Furthermore, the genetic algorithm (GA)  [4], is affected 
by Darwinian principle of the ‘survival of the fi ttest’ and the 
natural process of evolution through reproduction. Memetic 
algorithm (MA) [ 5], is inspired by Dawkins’ notion of a meme. 
H o wever, particle swarm optimization (PSO) [6], is developed 
from social behavior of bird fl ocking or fi sh schooling by 
Eberhart and Kennedy. Ant colony optimization (ACO) [7], 
mimics ants which are able to discover the shortest route 
between their nest, and a source of food. Shuffl ed frog leaping 

algorithm (SFL) [8], is introduced to combine the benefi ts 
of the genetic based and the social behavior-based PSO. Bat 
algorithms (BAs) are inspired by the echolocation behavior of 
bats [9]. Harmony search (HS) [10], which is based on natural 
musical performance processes, occurs when a musician 
searches for an optimal state of harmony. Finally, chemical 
reaction optimization (CRO) is developed and proposed by Lam 
and Li [11,12], which simulate the effective drive to molecules 
in chemical reaction. 

Although there are abundant approaches suggested to solve 
optimization problems, researchers still measure the capability 
of algorithms by comparing the optimal results generated 
with the previous methods in minimization aspect. They 
have corroborated that the published algorithms are suitable 
for solving minimization problems. Nevertheless, these are 
unwarranted to be appropriate for absolutely all optimization 
problems. As a result, the simulation based on maximization is 
considered in this paper. We also intend to solve maximization 
problems by experimenting several optimization algorithms 
based on CRO framework. These algorithms include an effective 
version of RCCRO (i.e., RCCRO4), HP-CRO2 a best version of 
hybrid algorithm based on PSO with CRO, OCRO which is a 
hybrid orthogonal crossover with CRO, and a recent established 
algorithm MCRO which is hybrid polynomial mutation operator 
with CRO.

The rest of this paper is organized as follows: a brief 
review of optimization algorithms based on CRO is introduced 
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in Section 2. In Section 3, optimization problem functions 

and evaluation methods which are used for measuring the 

performance of algorithms are presented. The experimental 

results and discussions for different experiments are illustrated 

in Section 4. Finally, Section 5 highlights conclusion and our 

future work.

Optimization algorithms based on CRO

CRO [11,12], is a framework that mimics molecular 

interactions in chemical reactions to reach a low-energy stable 

state. Potential energy is the energy stored in a molecule with 

respect to its molecular confi guration; the system becomes 

disordered when potential energy is converted to other forms 

[11]. Molecules stored in a container are vital to the manipulation 

of agents. Each molecule contains a profi le that includes several 

attributes, such as molecular structure (), current potential 

energy (PE), and current kinetic energy (KE). In CRO reaction, 

the initial reactants in high-energy states incur a sequence 

of collisions. Molecules collide either with other molecules or 

with the walls of the container, pass through energy barriers, 

and become the fi nal products in low-energy stable states. 

Typically, C R O includes three phases: initialization, iteration, 

and the fi nal phase. In each run, the algorithm begins with 

initializing the population or the molecules contained in a 

container, and a particular number of iterations are, then, 

performed. When it satisfi es the stopping criteria, the global 

optimal solution is presented. 

This section provides a brief of RCCRO which is represented 

as the best research of original CRO, and several hybrid 

optimization algorithms based on CRO have practiced the 

performance in minimization aspect: HP-CRO, OCRO and 

MCRO. 

Real-coded chemical reaction optimization (RCCRO):  T he 

concept of CRO is captured from the phenomenon of driving 

high-energy molecules to stable states through various 

types of elementary reactions. In CRO algorithm, four types 

of elementary reactions can take place: On-wall ineffective 

collision, Intermolecular ineffective collision, Decomposition, 

and Synthesis. On-wall and intermolecular ineffective collisions 

are local searches, whereas decomposition and synthesis are 

global searches. The characteristics and descriptions of these 

four elementary reactions are as follow [12,13].

On-wall ineff ective collision is the reaction created when a 

molecule hits the wall of a container and then bounces back. 

This reaction only slightly changes the molecular structure () 

when PE + KE ≥ PE occurs. The new molecular structure (ώ) is 

produced by neighborhood search operator as ώ = neighborhood 

(). The central energy buffer is updated by extracting and 

storing a certain portion of its KE. The profi le of the molecule 

is updated as KEώ = (PE − PEώ + KE) × r, where r is a random 

number that r  [KELossRate,1]. The new PE of new fi tness is 

calculated by the new  or ώ as f(ώ).

Intermolecular ineff ective collision refers to two or more 

molecules that collide with one another and then separate. This 

reaction also slightly changes the molecular structure similar to 
on-wall ineffective collision. The profi les of the molecules and 
the central energy buffer are updated when PEώ1 + PEώ2 + KEώ1 + 
KEώ2 ≥ PEώ1 + PEώ2. The molecular structures are produced from 
their own neighborhood by neighborhood search operator. The 
number of molecules are unchanged after the collision. 

Decomposition represents the situation when a molecule 
hits the wall of a container and then splits into two or more 
molecules. This elementary reaction is applied to fi nish local 
search and explore other regions (i.e., global search). The 
profi les of the molecules and the central energy buffer are 
updated when PE + KE ≥ PEώ1 + PEώ2 and when the energy 
buffer is suffi cient. This reaction signifi cantly processes new 
molecular structures of the resultant molecules.

Synthesis occurs in the situation that two or more molecules 
collide and transform to a single molecule. The profi les of the 
molecules and the central energy buffer are updated when 
PE1 + PE2 + KE1 + KE2 ≥ PEώ. This reaction strongly and 
signifi cantly alters the resultant molecular structure. The 
number of molecules are reduced after the collision. 

RCCRO is the most powerful algorithm of original CRO. In 
addition, RCCRO4 is the best version of RCCRO. The algorithm 
of RCCRO4 is represente as algorithm 1.

Algorithm 1: RCCRO4 Algorithm 

Input: Objective function f , constraints, and the dimensions of the problem
1: /* initialization phase*/
2: Assign parameter value to PopSize, InitialKE, StepSize, buffer, KELossRate, 

On-wallColl, 
3: DecThres, SynThres, The set of molecules in this Container are molecules 

1, 2, . . . , PopSize
4: for each of the molecule  do
5:    Assign a random solution to the molecular structure ω. Calculate the PE 

by f (ω) and evaluate.
6:     Assign the KE with InitialKE
7: end for
8:  /*  Iterations  phase*/
9: while (the stopping criteria not met) do
10:     Get r randomly in interval  [0,1]
11:     if (r >  On-wallColl) then
12:            select  a molecule M from Container Randomly 
13:             if (Decomposition criterion met) then
14:                  Decomposition
15:                  if Success then Add a new molecule M’ to Container
16:              else
17:                   On-wallineffectiveCollision
18:               end if
19:         else
20:                select two molecule M1 and M2 from Container  Randomly
21:                if (Synthesis criterion met) then
22:                       Synthesis
23:                       if Success then Remove molecule M2 from Container
24:                 else
25:                       Inter-molecular Collision
26:                 end if
27:            end if
28:            evaluate and keep any new optimal solution
29:       end while
30:      /* The Output phase */
31:     Output the best solution and its function value
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Hybrid algorithm based on particle swarm and chemical 
reaction optimization (HP-CRO): The HP-CRO [14], is an 
approach for optimizing functions based on PSO and CRO 
algorithm. This algorithm presents the combination between 
PSOupdate operator and local search operators which make 
algorithm effi cient. In addition, structure of the algorithm can 
easily control the whole search space to fi nd global minimum 
based on the difference between the two boundary handling 
constraints. HP-CRO contains two elementary reactions: 
On-wall ineffective collision and Intermolecular ineffective 
collision. Several parameters are included in HP-CRO: inertia 
weight w = 0.729, local weight c1 = 1.49445, global weight c2 
= 1.49445, r1 and r2 randomizes. There are two versions of 
HP-CRO which are HP-CRO1 and HP-CRO2, whereas the best 
version is HPCRO2. Algorithm of HP-CRO is demonstrated as 
Algorithm 2. For more details, HP-CRO is represented in [14], 
we note that we have changed the condition of algorithm to 
maximization operation.

Algorithm 2: HP-CRO Algorithm 

Input: Objective function f, constraints, and the dimensions of the problem
1: \\ Initialization
2: Assign parameter values to PopSize, KELossRate, Stepsize, buffer, InitialKE, 

γ, InterRate,   
    w(inertia weight), c1 (cognitive/local weight), c2 (social/global weight).
3: Let Pop be the set of molecule (particle) 1, 2,. . ., Popsize
4: for each of molecules (particles) do
5:        Assign random solution to the molecular structure  (particle position) w
6:       Calculate the fi tness by f(w)
7:       Set PSOCoe = 0
8: end for
9: \\ Iterations
10: while (the stopping criteria not met) do
11:     Select a molecule Mw from Pop randomly
12:     if PSOCoeMw > γ then
13:        PSOUpdate(Mw)
14:       PSOCoeMw = 0
15:     else
16:        Generate r randomly in interval [0,1]
17:        if r > InterRate then
18:          Randomly select molecule Mw1

19:          IntermolecularIneffectiveCollision(Mw,Mw1)
20:           PSOCoeMw = PSOCoeMw + 1
21:          PSOCoeMw1 = PSOCoeMw1 + 1
22:        else
23:          OnwallIneffectiveCollision(Mw)
24:          PSOCoeMw = PSOCoeMw + 1
25:     end if
26:   end if
27:   Check for any new optimal solution
28: end while
29: // The fi nal phase
30: Output the best solution found and its objective function value

Orthogonal chemical reaction optimization (OCRO): 
In general, the OCRO [15], is an algorithm that hybrids 
quantization orthogonal crossover (QOX) and CRO. It creates 
new molecules by two types of elementary reaction on-wall 
ineffective collision and intermolecular ineffective collision as 
original CRO. Moreover, it uses QOX search operator to create 
new molecules. The two elementary reactions in CRO serve as 
local search while QOX is provided to work as a global search 
operator. However, synthesis and decomposition elementary 
reactions are not included in OCRO. The algorithm has three 
main phases including: 1) initialization, 2) iteration, and 3) the 

fi nal phase as original CRO. In the iteration phase, the type 
of search is identifi ed by judging whether a random number 
t is bigger than Molecoll. QOX search takes place when t is 
smaller than Molecoll. Otherwise, it may result in a local search 
included on-wall ineffective collision and intermolecular 
ineffective collision. Any new local minimum found are 
checked and recorded as a new global minimum. Later on, the 
judge determines whether it is an intermolecular collision. The 
fi nal global minimum is presented as the optimal result. OCRO 
Algorithm is shown in Algorithm 3. See more description of 
OCRO in [15].

Algorithm 3: OCRO Algorithm

Input: Objective function f, constraints, and the dimensions of the problem
1. Assign parameter values to PopSize, KELossRate, MoleColl, buffer, Stepsize 

and InitialKE
2.Let Pop be the set of molecule 1, 2,.. ., PopSize
3.for each of the molecules do
4.      Assign a random solution to the molecular structure x
5.      Calculate the PE by f(x)
6.      Assign the KE with InitialKE
7.      FE = PopSize
8.end for
9.Assign buffer = 0
10. while the stopping criteria not met do
11.        Get t randomly in interval [0,1]
12.         if t < Molecoll then
13.             select molecules M1 and M2 from Pop randomly
14.             QOX(M1, M2)
15.             FE = FE + 10;
16.         else
17.              Get w randomly in interval [0,1]
18.               if w > 0.5 then
19.                  Select a molecules M from Pop randomly
20.                  On-wall ineffective collision (M)
21.                  FE = FE + 1;
22.              else
23.                   select molecules M1 and M2 from Pop randomly
24.                   Intermolecular ineffective Collision (M1,M2)
25.                   FE = FE + 2;
26.              end if
27.         end if
28.          Check for any new optimal solution
29. end while
30. Output the best solution found and its objective function value 

A hybrid mutation chemical reaction optimization 

algorithm (MCRO): A hybrid optimization algorithm MCRO 

[16] combines mutation operator with CRO in which turning 

operator. The latter is also included in this algorithm. The most 

appreciate mutation operator in MCRO framework is polynomial 

mutation operator. The exclusivity of MCRO compared to the 

other two hybrid CRO algorithms (i.e., HP-CRO2 and OCRO) is 

that MCRO focuses on hybrid new contents specifi c into four 

elementary reactions of CRO. However, HP-CRO2 and OCRO 

interest hybrid new contents to core procedure in order to 

work instead of two elementary reactions (i.e., synthesis and 

decomposition) which serve as global search in RCCRO. Hence, 

the main algorithm of MCRO is similar to RCCRO4 but different 

in the sub-algorithm. The main procedures such as on-wall 

ineffective collision, intermolecular ineffective collision, 

decomposition, synthesis, and neighborhood search operator, 

are discussed as follow: 
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Turning operator is invented and merged into 

neighborhood search operator which works in three types of 

elementary reactions of RCCRO: on-wall ineffective collision, 

intermolecular ineffective collision, and decomposition. 

Turning operator transforms the molecular structure from the 

neighborhood of the operand to highly improve the optimal 

quality and reliability of the algorithm.

A mutation operator is applied to each new molecule in the 

initialization phase of algorithm and incorporated in changing 

the molecular structure. As a consequence, the results are 

judged before and after studied the performance of mutation 

operator and selected the better result to be recorded as a new 

global minimum. Mutation operator can spread the search 

space by randomly sampling new points and increases the 

opportunity of generating more ideal result not less than twice 

of RCCRO for every elementary reaction. Related algorithms are 

represented in algorithms 4, 5, 6 and 7, further information 

can be found in [16].

Algorithm 4: On-wall in effective Collision of MCRO

Input: a molecule M and buffer
1: Obtain ώ = Neighbor (ω) with turning operator 
2: Calculate PEώ by f (ώ)
3: if PEω+ KEω≥ PEώthen
4:       Get r randomly in interval [KE Loss Rate, 1]
5:        KE ώ = (PEω+ KEω− PEώ ) x r     
6:       Update buffer = buffer - KE ώ

7:       do Mutation of ω to tempω
8:       Calculate the tempPE  by f(temp ω) 
9:   if tempPE better than PEώ then Replace ώ with tempω , PEώ with 
tempPE 
11:   Update the profi le of M by ω= ώ, PEω = PEώ and KEω= KE ώ

12:   end if
Output M and buffer 

Algorithm 5: Inter-molecular Collision of MCRO

Input: molecules M1, M2 

1: Obtain ώ1 = Neighbor(ω1) and ώ2 = Neighbor(ω2) with turning 
operator

2: Calculate PEώ1 and PEώ2

3: temp2 = (PEώ1 + PEώ2 + KEώ1 + KE ώ2 )−(PEώ1+PEώ2)

4: if PEώ1 + PEώ2 + KEώ1 + KE ώ2  ≥ PEώ1+PEώ2 then

5:        Get r randomly in interval [0, 1]

6:        KEώ1 = temp2xp and  KEώ2= temp2x (1 − p)

7: end if

8: do Mutation of ω1 to tempω1  and ω2 to tempω2 

9: Calculate the tempPE1 by f(tempω1) and tempPE2 by f (tempω2)  

10: If tempPE1 better than PEώ1  : Replace ώ1 with tempω1  and  PEώ1 
with tempPE1

11: If tempPE2 better than PEώ2  : Replace ώ2 with tempω2  and  PEώ2 
with tempPE2

12: Update the profi le of M1 by ω1 = ώ1, PEώ1 = PEώ1 andKEώ1 = KEώ1

13: Update the profi le of M2 by ω2 = ώ2, PEώ2 = PEώ2 andKEώ2 = KEώ2

14: Output M1 and M2

Algorithm 6: Decomposition of MCRO

Input: A molecule M and buffer
1: Obtain ω1 and ω2 from ω
2: Obtain ώ1 = Neighbor (ω1) and ώ2 = Neighbor (ω2) with turning operator
3: Calculate PEώ1and PEώ2

4: temp1 =  PEω+ KEω -  PEώ1  - PEώ2

5: Success=TRUE 
6: if PEω+ KEω ≥  PEώ1  + PEώ2 then
7:       Get k  randomly in interval [0, 1]
8:       KEώ1 = temp1 x k   and KEώ2 = temp1x (1–k)
9:       Create new molecules M’
10:     else  if temp1 + buffer ≥ 0 then
11:                 Get r1, r2, r3, and r4 randomly in interval [0, 1]
12:                 KEώ1 = (temp1 + buffer) x r1 x  r2
13:                 KEώ2 = (temp1 + buffer-  KEώ1) xr3 x  r4
14:                 Update buffer = temp1 + buffer − KEώ1 − KEώ2

15:                 Create new molecules M’
16:       end if    
17: else
 18:         Success = FALSE
 19:  end if
 20:   If Success = TRUE
 21:      do Mutation of ώ1 to tempώ1  and ώ2 to tempώ2  
 22:      Calculate the tempPE 1 by f(tempώ1) and  tempPE 2 by f(tempώ2 
 23:      If tempPE1 better than  PEώ1 then  Replace ώ1 with tempώ1  and  PEώ1 

with tempPE1

 24:      If tempPE1 better than  PEώ2 then  Replace ώ2 with tempώ2  and  PEώ2 
with tempPE2

 25:       Assign ώ 1, PEώ1, KEώ1 to the profi le of M
 26:       Assign ώ 2, PEώ2, KEώ2 to the profi le of M’  
 27:  end if  
 28:  Output M and M’, Success and buffer

Algorithm 7: Synthesis of MCRO

Input: molecules M1, M2

1: Obtain ώ1 from ω1 and ώ2 from ω2

2: Calculate PEώ1

3: if PEω1 + PEω2 + KEω1 + KEω2 ≥ PEώ1 then
4:      Success = TRUE
5:      KEώ1 =PEω1 + PEω2 + KEω1 + KEω2 − PEώ1

6:      do Mutation of ώ1 to tempώ1

7:      Calculate the tempPE  by f (tempώ1) 
8:      if tempPE better than PEώ1 then Replace ώ1 with te mpώ1 and  PEώ1 with 

tempPE 
9:      Assign ώ1 PEώ1 and KEώ1 to the profi le of M1

10: else
11:    Success = FALSE
12:  end if
13:  Output M1 and Success

The performance in terms of minimization among these 
four algorithms has been discussed in [16]. The ranking by 
the best powerful algorithm to the worst algorithm are MCRO, 
OCRO, HP-CRO2, and RCCRO4, respectively. 

Problem functions and evaluation methods

Maximization Operation: As previously mentioned, 
discovering the most powerful optimal solution of any problem 
is the main purpose of optimization. In general, the function is 
called an objective function, cost function (i.e., minimization), 
or utility function (i.e., maximization). An optimal solution 
is considered to be the minimum / maximum of the objective 
function which is known as a global optimal solution. An 
optimization problem includes minimizing or maximizing a 
function systematically by selecting input values from a given 
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feasible set. Problem function f(x) is a scalar, where a variable 
x represents a particular solution and is usually a vector of 
n components. An optimization problem can be subject to 
nominated constraints C, defi ned as C = {c1, c2, . . . , cm} which 
limits the feasible region. In the literature, the standard 
formulation of an optimization problem is largely stated in 
terms of minimization. Generally, unless both the feasible 
region and the objective function are convex in a minimization 
problem, there may be more than one local minimal. A local 
minimum 𝑥 is defi ned as a point for which the following 
expression holds [13,17].

(𝑥) ≤ (𝑥)                       (1)

The goal of minimization is to fi nd the minimum solution ś 
 S and (ś)  ≤ f (s),  s S. 

Mathematically, a minimization problem has the following 
form:

   
 

0   
max   

0   n

i

x R i

C x i E
f x subject to

C x i I
 




  
                  (2)

 Where R,E and I symbolize the real number set, the index 
set for equality constraints, and the index set for inequality 
constraints, respectively. 

With the same concept, the aim of maximizing operation 
is to generate the maximum solution of f(x). ś  S and. (ś) ≥ f 
(s),  s S 

Mathematically, a maximization problem has the following 
form: 

   
 

0   
max   

0   n

i

x R i

C x i E
f x subject to

C x i I
 




  
                 (3)

Benchmark functions and Parameters: The benchmark 
functions in this paper are similar to the previous CRO 
publication [13-16], all experiments are simulated to solve the 
23 objective problem functions. Such benchmark functions are 
classifi ed into three categories as shown in Table 1. Category I 
is the high-dimensional unimodal functions, category II is the 
High-Dimensional Multimodal Functions, and category III is 
the Low-Dimensional Multimodal Functions, More details are 
contrasted in [13-16]. 

This research obtains the main parameters provided in 
CRO framework [13], as shown in Table 2. Moreover, there 
are several individual parameters for each algorithm that 
are obtained as its original work, and more description are 
contained in [14-16].

Evaluation methods: There are three evaluation methods 
that are used in our experiments to compare the performance 
of competition algorithms. These three methods are optimal 
solution quality evaluation, convergence speed, and statistical 
hypothesis testing.

(1) Optimal solution quality evaluation: In each computing 
time of optimization algorithm when solving an objective 
function, this will output a most potential result named optimal 

solution. Since almost previous publications were focused on 
solving minimization, the authors considered the result the 
best global minimum. Different from this paper, we call the 
optimum result as the best global maximum because we are 
interested in solving maximization problem.

For algorithms based on CRO in our simulation, each round 
of iteration contains the local maximum as the best result of 
round. Accordingly, the current global maximum is replaced 
by the local maximum when the new local maximum is better 
than current global maximum. The best global maximum at 
each computing time is generated when the program meets 
the stop condition of algorithm. The optimal solution quality is 
evaluated by comparing the mean of the best global maximum 
or the optimal solution of each function at all computing 
times (i.e., in this paper is 25). If the optimal solutions of the 
competitors are equal, then, the second key for comparison is 
the standard deviation, the lower standard deviation is winner. 

 (2) Convergence Speed Evaluation: Beside optimal solution 
quality, convergence speed is an essential issue that indicates 
the capability of competition algorithms in terms of speed 
to reach the global optimal solution. In our experiment, 
the convergence speed of the algorithm is calculated by 
counting the number of iterations (FEs) before the algorithm 
converges into the acceptable solution. Since there is no any 
acceptable solution that has been published for maximizing, 
we determine the acceptable solution by averaged the mean of 
objective function’s optimal solution for these four comparison 
algorithms. The strong algorithms have to generate the result 
at least not worse than the acceptable solution. The algorithm 
with fewer FEs is more outstanding than that with greater 
FEs. Furthermore, we draw a convergence curve for specifi c 
functions in a particular run. The ideal curve should begin 
with the lowest number, then, growing to the highest number, 
opposite minimization.

(3) Statistical Hypothesis Testing: In order to strengthen 
our experiments over above two evaluation methods, we 
verify aptitude of competition algorithms by using statistical 
hypothesis testing names Friedman test [18]. It is a famous 
non-parametric statistical testing. Friedman rank is processed 
by transforming the quality results of contestant algorithms 
to ranks for each objective function, the average ranks are 
selected when ranks are equal. 

Experimental results and discussion

The proposal for the conducted experiments is to evaluate 
the performance of competitor algorithm RCCRO4, HP-CRO2, 
OCRO, and MCRO by running each objective function for 25 
times in maximization aspect. We note that, we have changed 
the condition of algorithms to maximization. Our simulation is 
built by using C# programming language and the experiments 
are executed on a computer with Intel Corei7, CPU 3.10 GHz, 
and Ram 4GB specifi cations. According to the evaluation 
method mentioned in section 3.3, the simulation results are 
demonstrated in the following, proved that the best results are 
marked in bold.
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Table 1: The benchmark objective functions

Objective function
No. of 
Molecules

Lower-
Upper bound

Name

Category I

  2
1 1

n
i if x x 

30  [-100, 100]n Sphere model

 2 1 1| |    n n
i ii if x x x    

30 [-10, 10]n

Schwefel’s problem 2.22

   23 j1 1
n i
i jf x x   

30
[-100, 100]n Schwefel’s problem 1.2

   4 | |, 1i if x max x i n  
30

[-100, 100]n Schwefel’s problem 2.21

     
2 21 2

5 11 100  1n
i ii if x x x x


 
      

 

30  [-30, 30]n Generalized Rosenbrock’s 
function

   26 1  x | 0.5|  n
iif x  

30  [-100, 100]n Step function Quartic

  4  
7 1 ix ix  random[0,1)n

if    30  [-1.28, 1.28]n Function with noise

Category II

    8 1 sin | |n
i iif x x x                                 

30  [-500, 500]n Generalized Schwefel’s 
problem 2.26

    2
9 1 cos 2 10n

ii if x x x     
30 [-5.12, 5.12]n Generalized Rastrigin’s 

function

    2
10 1 1

1 120 0.2     exp cos2 20  n n
ii i if x exp x x e

n n
 

         
 

30  [-32, 32]n Ackley’s function

  2
11 1 1

1 cos 1
4000

n n i
i i i

x
f x x

i 
 

     
 

30 [-600, 600]n Generalized Griewank 
function

          2 22 29 2
12 1 1110 1 1 10 1 i i nif x sin y y sin y y

n
   

         

 30
1   ,10,100,4  ii u x

 11 1
4i iy x  

30                      [-50, 50]n

Generalized penalized 
funtions

            2 22 29 2 2
13 1 110.1 3 1 1 3 1  1 2 30i i nif x sin x x sin x x sin  

                

 30
1 ,5,100,4ii u x

              

30 [-50, 50]n
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Remark:  In f12 and f13

( ( ) ,
; ( , , , )

( )

,{

,

m
i i

i i
m

i i

k x a x a
u x a k m a x a

k x a x a

O
 

  

 
 
 

  
 




 

  

Category III

 
 

1

25
14 1 62

1

1 1  
500 j

i iji

f x
j x a







 
 

   
   

         
2 [-50, 50]n Shekel’s Foxholes 

function

 
 

2
21 211

15 1 2
3 4

b b xii
ii

ii

x

f x a
b b x x





 
 

   
  

  

                 

 4  [-5, 5]n Kowalik’s function

  2 4 6 2 4
16 1 1 1 2 21 2

14  2.1   4 4
3

f x x x x x x x x     
2 [-5, 5]n Six-hump camel-back 

function

2 2
1 2 1 1 12

5.1 5 17( ) ( 6) 10(1 )  10
84

f x x x x cos x
 

     
2 [-5, 10] x [0, 15] Branin function

     2 2 2
18 1 2 1 1 2 1 2 2  1 1 19 14 3 14 6 3f x x x x x x x x x           

2 2 2
1 2 1 1 2 1 2 2[30 (2 3 ) (18 32 12 48 32 27 )]x x x x x x x x x      

                                                                                                            
2  [-2, 2]n                      Goldstein-Price function

   24 4
19 1 1expi ij j iji j

f x c a x p 
 

    
 

                                                       
3 [0, 1]n 

Hartman’s family

   24 6
20 1 1expi ij j iji jf x c a x p 

 
    

 

6 [0, 1]n

    
1

5
21 1

T
i i iif x x a x a c




       

                                                      
4  [0, 10]n

Shekel’s family    
1

7
22 1

T
i i iif x x a x a c




       

4   [0, 10]n

    
1

10
23 1

T
i i iif x x a x a c




       

4  [0, 10]n                    

This research obtains the main parameters provided in CRO framework [13] as shown in Table 2. Moreover, there are several individual parameters for each algorithm that 
are obtained as its original work, and more description are contained in [14, 15, 16].
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(1) The results of optimal solution quality evaluation are 
illustrated in Table 3-5. Table 3 represents the optimal solution 
quality of MCRO, OCRO, HP-CRO2, and RCCRO4 for category 
I which contains seven high-dimensional unimodal functions 
(f1-f7). MCRO conducts the best for f2, f3, f4, f5, f6 and f7, 
except the f1 that generates the best result by RCCRO4.The 
ranking of optimal solution quality for category I functions 
from best to worst as follows: MCRO, HP-CRO2, RCCRO4 and 
OCRO respectively.

Table 4 compares the optimal solution quality for 
6 functions in Category II which are high-dimensional 
multimodal functions. MCRO operates the best for f11, f12 and 

f13 while HP-CRO2 has the best results for f8, f9, and f10. 
Therefore, the ranking of optimal solution quality of Category 
II functions is led by MCRO and HP-CRO2, followed by RCCRO4 
and OCRO respectively. 

Table 5 compares the results of Category III functions or 
low-dimensional multimodal functions. MCRO is the most 
outstanding in this category because it generates the best 
results for all 10 functions: f14 - f23. MCRO is followed by 
RCCRO4, while HP-CRO2 is the third rank, and OCRO is the 
fourth rank. 

The overall ranking of optimal solution quality is 
represented in Table 6, showing that MCRO performs the best 
in the optimal solution quality evaluation. MCRO is followed 
successively by HP-CRO2, RCCRO4 and OCRO. 

(2) The results of convergence speed evaluation for 4 
comparison algorithms are presented in Table 7, all algorithms 
perform the best convergence of f14 when converges the 
acceptable solution at 1 FE; MCRO, OCRO and HP-CRO2 are 
leaders of f18 when converges the acceptable solution at 1 FE; 
MCRO and OCRO output the most advantageous convergence 
speed of f20 when converges the acceptable solution at 1 FE; 
MCRO and HP-CRO2 report the best results for f16 .Moreover, 

Table 2: MCRO parameters

                          Category
Parameter

Category I Category II Category III

(f1 - f7) (f8 – f13) (f14 – f23) 

popsize 10 20 100

InitialKE 1000 10000000 1000

Buffer 0 100000 0

KELossRate 0.1 0.1 0.1

On-wallColl 0.2 0.2 0.2

DecThres 150000 150000 150000

SynThres 10 10 10

Table 3: Results of Optimal solution quality for category I (f1 – f7)

Algorithm Result of f1 f2 f3 f4 f5 f6 f7 Average Rank

Mean 2.95E+05 2.87E+02 2.85E+05 100.00 2.23E+09 2.96E+05 9.52E+02

MCRO StDev 3.61E+02 9.00E-01 4.53E+02 0.00 1.97E+07 6.40E+02 1.72E+01

Rank 2 1 1 1 1 1 1 1.14

Mean 1.30E+05 1.79E+02 1.25E+05 9.96E+01 6.65E+08 1.24E+05 3.77E+02

OCRO StDev 9.88E+03 8.56E+00 1.05E+04 4.48E-01 7.64E+07 7.50E+03 4.61E+01

Rank 4 4 4 4 4 4 4 4.00

Mean 2.39E+05 2.65E+02 2.37E+05 1.00E+02 1.66E+09 2.41E+05 8.78E+02

HP-CRO2 StDev 2.66E+04 1.48E+01 1.86E+04 1.50E-04 2.50E+08 2.20E+04 1.54E+02

Rank 3 2 2 2 2 2 2 2.14

Mean 1.28E+07 1.80E+02 1.28E+05 9.98E+01 6.82E+08 1.26E+05 4.44E+02

RCCRO4 StDev 5.80E+05 1.01E+01 1.30E+04 3.13E-01 9.11E+07 1.00E+04 5.67E+01

Rank 1 3 3 3 3 3 3 2.71

Table 4: Results of Optimal solution quality for category II (f8 – f13)

Algorithm Result of f8 f9 f10 f11 f12 f13 Average Rank

MCRO

Mean 5.79E+03 9.10E+02 2.20E+01 2.65E+03 6.45E+09 1.05E+10

StDev 3.23E+02 8.57E+00 1.53E-02 4.18E+00 8.22E+07 1.35E+08

Rank 2 2 2 1 1 1 1.50

OCRO

Mean 2.50E+03 6.81E+02 2.16E+01 1.16E+03 1.93E+09 3.28E+09

StDev 6.02E+02 2.77E+01 8.02E-02 5.68E+01 2.21E+08 2.97E+08

Rank 4 4 4 4 3 4 3.83

HP-CRO2

Mean 9.32E+03 1.13E+03 2.21E+01 2.25E+03 5.17E+09 9.21E+09

StDev 4.82E+02 3.04E+01 4.07E-02 1.84E+02 9.24E+08 1.23E+09

Rank 1 1 1 2 2 2 1.50

RCCRO4

Mean 2.89E+03 6.96E+02 2.16E+01 1.22E+03 1.89E+09 3.35E+09

StDev 5.27E+02 2.45E+01 5.60E-02 9.89E+01 1.96E+08 4.87E+08

Rank 3 3 3 3 4 3 3.17
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MCRO and RCCRO4 generate the best results of f4 when 
converges the acceptable solution at 1 FE. Summary, MCRO 
generates the fastest convergence of 11 functions: f4, f10, 
f14, f15, f16, f17, f18, f19, f20, f21 and f23, and 7 of 11 functions 
converge the acceptable solution at 1 FE. In addition, ranking 
of other 12 functions for MCRO are second; HP-CRO2 is the 
best convergence of 12 functions: f2, f3, f5, f6, f7, f8, f9, f11, f12, 
f14, f16 and f18 .Although HP-CRO2 performs best for a number 
of functions there are only 3 of 12 functions that converge 
the acceptable solution at 1 FE. Moreover, ranking of the rest 
11 functions are second for 7 functions and the third for 4 
functions. OCRO generates the best results of 4 functions: f14, 
f18, f20 and f22; and RCCRO4 generates the best convergence 
speed of 3 functions: f1, f4 and f14. The average convergence 
speed ranking of comparison algorithms for all functions from 
fastest to slowest is led by MCRO, the second is HP-CRO2, 
followed by HP-CRO2 and RCCRO4 which are the same order.

Besides, when evaluating the convergence speed based on 
the iteration number (FEs), we evaluate the similar results of 
competition algorithm: MCRO, OCRO, HP-CRO2, and RCCRO4 
by drawing a convergence curve of specifi c functions which 
select 2 functions from each category: category I (f3, f7), 
category II (f11, f12) and category III (f16, f22) in a particular 
run. We note that appreciate curve for maximizing operation 
should be grown, as opposed to minimization. Figure 1-3 
shows that MCRO remains the most outstanding among the 
four algorithms.

(3) As mentioned above, we provide Freidman test for 
statistical hypothesis testing .Friedman rank is processed 
by transforming the results of each function comparison 
algorithms to ranks. The average ranks are provided when 
ranks are equal. Table 8 presents the results of Freidman test 
for optimum solution quality and convergence speed. The 
results of Friedman rank test in terms of the comparison of 
optimal solution quality MCRO achieves the best rank, followed 
by HP-CRO2, RCCRO4 and OCRO respectively. In terms of the 
competition of convergence speed, MCRO also performs the 
outstanding and HP-CRO2 is the second best similar to optimal 
solution quality comparison, while OCRO is the third, then, 
RCCRO4 is the worst different from optimal solution quality 
comparison. 

Table 5: Results of Optimal solution quality for category II (f14 – f23)

Algorithm Result of f14 f15 f16 f17 f18 f19 f20 f21 f22 f23
Average 

Rank

MCRO

Mean 5.00E+02 2.69E+15 6.46E+03 5.05E+02 1.02E+06 1.00E+02 1.00E+02 1.00E+02 9.99E+01 9.99E+01

StDev 1.36E-08 1.10E+16 3.92E+01 2.71E-01 4.08E+02 8.86E-06 2.49E-07 1.43E-04 2.01E-04 3.42E-04

NRank 1 1 1 1 1 1 1 1 1 1 1.00

OCRO

Mean 5.00E+02 2.65E+06 5.02E+03 3.56E+02 7.00E+05 1.00E+02 1.00E+02 9.99E+01 9.99E+01 9.99E+01

StDev 7.71E-05 4.57E+06 6.51E+02 7.54E+01 1.44E+05 1.35E-04 4.38E-05 4.50E-03 6.90E-03 9.96E-03

NRank 3 4 4 4 4 3 3 4 4 4 3.70

HP-CRO2

Mean 5.00E+02 1.74E+14 5.81E+03 4.88E+02 9.98E+05 1.00E+02 1.00E+02 9.99E+01 9.99E+01 9.99E+01

StDev 1.57E-05 5.01E+14 3.25E+02 1.00E+01 1.43E+04 1.63E-04 4.50E-05 4.31E-03 5.81E-03 8.33E-03

NRank 2 2 2 2 2 4 4 3 3 3 3.00

RCCRO4

Mean 5.00E+02 1.12E+09 5.28E+03 3.89E+02 7.24E+05 1.00E+02 1.00E+02 1.00E+02 9.99E+01 9.99E+01

StDev 9.76E-05 5.44E+09 6.52E+02 7.03E+01 1.57E+05 6.87E-05 1.75E-05 2.23E-03 5.48E-03 6.89E-03

NRank 4 3 3 3 3 2 2 2 2 2 2.29

Table 6: Overall ranking of optimal solution quality

Algorithm
Average Rank

Overall 
RankingCategory I

f1-f7
Category II

f8-f13
Category III

f 14-f23
Three 

Categories

MCRO 1.14 1.50 1.00 1.21 1

OCRO 4.00 3.83 3.70 3.84 4

HP-CRO2 2.14 1.50 2.70 2.11 2

RCCRO4 2.71 3.17 2.60 2.82 3

Table 7: Results of Convergence Speed

Function Acceptable MCRO OCRO HR-CRO2 RCCRO4

solution FEs Rank FEs Rank Fes Rank FEs Rank

f1 3.35E+06 * 2 * 2 * 2 1 1

f2 2.27E+02 163 2 * 3 15 1 * 3

f3 1.93E+05 252 2 * 3 37 1 * 3

f4 9.98E+01 1 1 * 4 22 3 1 1

f5 1.30E+09 168 2 * 3 47 1 * 3

f6 1.96E+05 287 2 * 3 59 1 * 3

f7 6.62E+02 71 2 * 3 21 1 * 3

f8 5.12E+03 18382 2 * 3 608 1 * 3

f9 8.54E+02 5069 2 * 3 411 1 * 3

f10 2.18E+01 138 1 * 3 1959 2 * 3

f11 1.82E+03 572 2 * 3 47 1 * 3

f12 3.85E+09 371 2 * 3 140 1 * 3

f13 6.58E+09 238 1 * 3 706 2 * 3

f14 4.999998E+02 1 1 1 1 1 1 1 1

f15 7.16E+14 205186 1 * 2 * 2 * 2

f16 5.64E+03 1 1 * 2 1 1 * 2

f17 4.34E+02 115 1 248 3 195 2 * 4

f18 8.59E+05 1 1 1 1 1 1 * 2

f19 9.99998E+01 19 1 * 3 * 3 2232 2

f20 9.999997E+01 1 1 1 1 120 2 149 3

f21 9.9952E+01 1 1 * 3 * 3 132 2

f22 9.9935E+01 137 2 1 1 * 3 * 3

f23 9.99E+01 1 1 * 2 * 2 * 2

Average rank 1.48 2.52 1.65 2.52

rank 1 3 2 3
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(a)

(b)

Figure 1: Convergence Curves of function f3 and f7 (category I).

(a)

(b)

Figure 2: Convergence Curves of function f11 and f12 (category II).

In the statistic test, comparing both the optimal solution 
quality and the convergence speed on the basis of the 
corresponding Friedman ranks 1.59 and 1.22, the statistic 
Ff values are 21.76398 and 35.96694, and the p-values are 
7.30387E-05 and 7.60987E-08. In addition, the results 
explicitly display signifi cant differences across the competing 
algorithms.

The performance measured by these three methods 
concludes that MCRO absolutely outstanding in order to solve 
maximization problem. 

Conclusion

This paper is concerned with solving optimization problem 
in maximization aspect. We provided several approaches 

(a)

(b)

Figure 3: Convergence Curves of function f16 and f22 (category III).

Table 8: Results of Friedman Ranks

      Friedman
                    Rank                          
Function

Optimal Solution quality Convergence Speed

MCRO OCRO
HP-
CRO2

RCCRO4 MCRO OCRO
HP-
CRO2

RCCRO4

f1 2 4 3 1 3 3 3 1

f2 1 4 2 3 2 3.5 1 3.5

f3 1 4 2 3 2 3.5 1 3.5

f4 1 4 2 3 1.5 4 3 1.5

f5 1 4 2 3 2 3.5 1 3.5

f6 1 4 2 3 2 3.5 1 3.5

f7 1 4 2 3 2 3.5 1 3.5

f8 2 4 1 3 2 3.5 1 3.5

f9 2 4 1 3 2 3.5 1 3.5

f10 2 4 1 3 1 3.5 2 3.5

f11 1 4 2 3 2 3.5 1 3.5

f12 1 3 2 4 2 3.5 1 3.5

f13 1 4 2 3 1 3.5 2 3.5

f14 1 3 2 4 2.5 2.5 2.5 2.5

f15 1 4 2 3 1 3 3 3

f16 1 4 2 3 1.5 3.5 1.5 3.5

f17 1 4 2 3 1 3 2 4

f18 1 4 2 3 2 2 2 4

f19 1 3 4 2 1 3.5 3.5 2

f20 1 3 4 2 1.5 1.5 3 4

f21 1 4 3 2 1 3.5 3.5 2

f22 1 4 3 2 2 1 3.5 3.5

f23 1 4 3 2 1 3 3 3

Average 
Friedman 
rank

1.17 3.83 2.22 2.78 1.72 3.13 1.98 3.20

Rank 1 4 2 3 1 3 2 4
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based on CRO which had already promised the perspective of 
minimization in previous publications to the experimental 
such as RCCRO4, HP-CRO2, OCRO and MCRO. The evaluation 
results have proved that MCRO which is a hybrid algorithm 
CRO and polynomial mutation operator is the most excellent 
in maximizing and minimizing problems among the 
comparison algorithms for both optimal solution quality 
and convergence speed. But, there are some variations on 
ranking of other competitors such as HP-CRO2, which is the 
third on minimization and the second on maximization for 
both optimal solution quality and convergence speed. OCRO, 
which is the second best on minimization, is the third in the 
part of convergence speed and the worst in optimal solution 
quality on maximization. Finally, RCCRO4, which the worst 
on minimization, is the third in the part of optimal solution 
quality and the worst in convergence speed of maximization. 

The results forcefully verifi ed that MCRO is the best 
optimization approach to be considered as a promising 
algorithm for solving optimization (minimization or 
maximization) problems. 
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