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Abstract

Ridge regression method is an improved method when the assumptions of independence of the 
explanatory variables cannot be achieved, which is also called multicollinearity problem, in regression 
analysis. One of the way to eliminate the multicollinearity problem is to ignore the unbiased property 
of  . Ridge regression estimates the regression coeffi  cients biased in order to decrease the variance 
of the regression coeffi  cients. One of the most important problems in ridge regression is to decide 
what the shrinkage parameter (k) value will be. This k value was found to be a single value in almost 
all these studies in the literature. In this study, different from those studies, we found different k values 
corresponding to each diagonal elements of variance-covariance matrix of   instead of a single value 
of k by using a new algorithm based on particle swarm optimization. To evaluate the performance of 
our proposed method, the proposed method is fi rstly applied to real-life data sets and compared with 
some other studies suggested in the ridge regression literature. Finally, two different simulation studies 
are performed and the performance of the proposed method with different conditions is evaluated by 
considering other studies suggested in the ridge regression literature..
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Introduction

The functional relation between a dependent variable and 
more than one independent variable is examined by multiple 
regression analysis. The purpose of the multiple regression 
analysis is the creation of the best model that can predict the 
dependent variable by using the independent variables. For this 
purpose, the most common method to create the best model is 
ordinary least square (OLS) estimates method. In this method, 
the sum of error squares to be minimal is calculated to predict 
the parameters of the model.

There are some valid assumptions for the implementation 
of the multiple regression analysis. These are; the absence of 
multicollinearity problem among independent variables, the 
variance of error term must be constant for all independent 
variables and the covariance between error term and 
independent variables must be equal to zero. 

One of the major problems in multiple regression analysis 
is multicollinearity problem. If there is a full or high degree 
linear relationship among independent variables, this situation 
is called as multicollinearity. Besides, multicollinearity has 
some important effects on OLS estimates of the regression 

coeffi cients. In the presence of multicollinearity, the OLS 

of regression coeffi cients have large variance. And also, the 

regression coeffi cients can be estimated incorrectly and 

the standard errors of regression coeffi cients can be found 

as exaggerated in the presence of multicollinearity. If the 

regression coeffi cients can be estimated incorrect, it can be 

obtained incorrect results statistically. 

Therefore, ridge regression method is used to obtain stable 

coeffi cient estimates for the estimation of the regression 

coeffi cients. That means, ridge regression has been suggested 

to overcome the multicollinearity problem.

In the literature, it is commonly accepted that if the 

variance infl ation factors (VIF) values are greater than 10 

there is a multicollinearity problem. This is a rule of thumb 

and this is not exact information. Similarly, condition number 

can be used to determine multicollinearity problem by using 

rule of thumbs. As a result of, determining of multicollinearity 

problem can be realized by using some criteria.

The two methods most commonly used to determine the 

effects of multicollinearity problem are VIF and condition 
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number methods. The diagonal elements of  
^

Var  are called 
as VIF and are given by the Equation 1.

 2

1
1j

j

VIF
R




 1, ,j p                            (1)

In this Equation, 2
jR  is the determination coeffi cient 

obtained from the multiple regression of 
jX  on the remaining 

 1p regressor variables in the model. 

It can be said that there is a multicollinearity problem 
among the relevant independent variables if these VIF values 
increase (VIF values ≥ 10). And also, if VIF values are increased, 
the degree of the multicollinearity increases with the increase 
of VIF values. 

Condition number method is another method to determine 
the multicollinearity problem which is based on the eigenvalues 
of X'X  matrix. The formula of the condition number (CN) was 
given in Equation 2. 

max

min




                    (2)

In this Equation,   shows the eigenvalues of .'X X  the 
relationship between condition number and multicollinearity 
is given in Table 1.

In summary, the determining of multicollinearity problem 
can be done by following two rules of thumbs. The fi rst one is 
that if VIF values are greater than 10 multicollinearity is high. The 
second one is checking condition number as given in Table 1.

In addition, another problem in ridge regression is fi nding 
optimal biasing parameter (k) value. This k value is a very small 
constant determined by the researcher [1]. Several methods 
were proposed for fi nding it in the literature. These methods 
have been proposed in the studies of [2-22].

And also, there are many methods in the literature for 
ridge regression [23-29]. And also, [30] proposed some new 
methods that take care of the skewed eigenvalues of the matrix 
of explanatory variables. [31] Proposed an iterative approach 
to minimize the mean squared error in ridge regression. 
[32] Proposed new ridge parameters for ridge regression. 
[33] Proposed an optimal estimation for the ridge regression 
parameter. [34,35] Proposed some new estimators for 
estimating the ridge parameter.

This k value was found to be a single value in almost all these 
studies in the literature. But in this study, we found different 
k values corresponding to each diagonal elements of variance-
covariance matrix of   instead of a single value of k by using a 
new algorithm based on particle swarm optimization.

The rest part of the paper can be outlined as below: 

The second section of the paper is about ridge regression. 
The methodology of the paper is given in Section 3. The 
implementation of our proposed method is given in Section 4. 
Two different simulation studies are performed under the title 
of simulation study and fi nally, discussions are presented in 
Section 6.

Ridge regression 

Ridge regression is a remedy used in the presence of 
multicollinearity problem and it was fi rstly proposed by 
[1]. Ridge regression method has two important advantages 
according to OLS method. One of them is to solve the 
multicollinearity problem and the other one is to decrease 
the mean square error (MSE). The solution technique of ridge 
regression is similar with OLS. Besides, the difference between 
ridge regression and OLS is the k value. This k value is also 
called as biased parameter or shrinkage parameter and it takes 
values between 0 and 1. This k value is added to the diagonal 
elements of the correlation matrix and thus biased regression 
coeffi cients are obtained. 

The OLS estimates of regression coeffi cients and ridge 
estimates of regression coeffi cients are shown in the Equations 
3 and 4 respectively.

  YXXX ''ˆ 1                     (3)

  1ˆ ' 'R X X kI X Y                       (4)

As noted above, ridge regression is a biased regression 
method. The proof of this situation is shown in Equation 5. 
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It is clearly seen that ridge estimates of regression 
coeffi cients  R̂  are biased estimates. One of the most 
important points to be considered in the ridge regression is the 
k value. There are many methods proposed in the literature to 
fi nd the optimal k value. Ridge trace is one of these methods. 
Ridge trace is a plot of the elements of the ridge estimator 
versus k usually in the interval (0, 1) [1].

The other methods in the literature used to fi nd the optimal 
k value were given in the Equations 6-14, respectively. 
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Table 1: Condition number and its effects.

Condition Number Multicollinearity

CN <100 There is no serious multicollinearity

100 <CN <1000 Strong multicollinearity

CN >1000 Severe multicollinearity exist in the data
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In this paper, for the purpose of comparing the results we 

just consider the methods of which a brief introduction is given 

as below. 

[2] Suggested another method for fi nding k value which is 

given in Equation 15




ˆˆ
ˆ
'

2pk                   (15)

In this Equation 2̂  and ̂  are the OLS estimates. This 

method is called as fi xed point ridge regression method (FPRRM). 

[39] Introduced an iterative method for fi nding the optimal 

k value. In this method k is calculated in Equation 16;

 
   1ˆ1ˆ

1ˆ
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2
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
tt

tpk



                (16)

In this Equation,  1ˆ 2 t  and  1ˆ t are the corresponding 

residual mean square and the estimate vector of regression 

coeffi cients at (t-1)th iteration, respectively. This method is 
called as iterative ridge regression method (IRRM).

And also, the generalized ridge regression estimator 
of Hoerl and Kennard [1, 40] is given in [41] by following 
Equations 17-20. 

Let   and Q be the matrices of eigenvalues and eigenvectors 
of  XX ' . In the orthogonal version of the classical linear 
regression model: Z XQ ,  'Q , yZ 'ˆ 1  ,

  0,,,, 21  ip kkkkdiagK   then

   ˆ~ 1 KQ                   (17)

~ Is the generalized ridge estimator of  . Hoerl and 
Kennard [1, 40], have shown that the values of ik which 
minimize the MSE of regression coeffi cient are given by

2

2

i
ik 


                (18)

And the estimation of ik values can be obtained by using 
Equation 19.

2

2

ˆ
ˆˆ
i

ik 


                 (19)

In [41], other estimation formulas for optimum shrinkage 
parameters are given below. 

  22

2

ˆˆ
ˆˆ

ii

i
i kn
k


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                (20)

Methodology

Finding the optimal k value is an important problem in ridge 

regression. The k values recommended in the literature were 

given in the previous section. And also, there are some heuristic 

methods such as genetic algorithms to fi nd the optimal k value 

in the literature proposed by [18, 21]. And also, [22] have found 

the k value by using particle swarm optimization (PSO). In all 

these methods suggested in the literature, this k value was 

found as a single value. But in this study, we found different k 

values corresponding to each explanatory variable instead of a 

single value of k by using an algorithm based on particle swarm 

optimization. And also, this paper is the improvement form of 

the study of [22].

The objective function of the paper was created by 

considering both mean absolute percentage error (MAPE) 

criterion and VIF values at the same time. The aim of the 

objective function is to fi nd the optimal k values by fi nding 

the VIF values    less than 10 and SSE (sum of square errors) 

minimum, at the same time. And also, we add a parameter 

 ( )k  to the second part of the objective function. This 

parameter can be called as penalty parameter. If the VIF value 

corresponds to any explanatory variable is bigger than 10 the 

value of the objective function is increased. This is an effect of 

the penalty parameter. This is an undesirable result.

The optimization problem in the proposed method can be 

given in Equation 21.
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Objective function:

  
1 2

1 2 1 2, , ,
min , , , ( , , , )

p
p pk k k

MAPE k k k k k k


   
                 (21)

 with subject to:  1 20 , , , 1   1, 2, ,pk k k j p   

where MAPE  1 2, , , pk k k  and  1 2, , , pk k k   can 
be defi ned in Equations 22 and 23 respectively. 
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(p shows the number of explanatory variables.) 

The optimization problem defi ned as in (21) was solved by 
using PSO in the proposed method. PSO is a popular artifi cial 
intelligence technique and it was fi rstly proposed by [42]. The 
algorithm of the proposed method is given below.

Algorithm 

Step 1. The parameters such as pn, 1c , 2c  etc., are 
determined. These parameters are as follows:

pn: particle number of swarm

1c : Cognitive coeffi cient 

2c : Social coeffi cient interval

maxt: Maximum iteration number

w: Inertia weight

Step 2. Generate random initial positions and velocities.

The initial positions and velocities are generated by uniform 
distribution with (0,1) parameters. Each particle has velocities 
up to the number of explanatory variables and each particle 
has positions up to the number of explanatory variables which 
represents  1 2, , , pk k k  values. t

mx  Represents the position of 
particle m at iteration t and t

mv  represents the velocity of the 
particle m at iteration t. 

Step 3. The fi tness function was defi ned as in (21) and the 
fi tness values of the particles are calculated. 

Step 4. Pbest and Gbest particles given in (24) and (25), 
respectively, are determined according to fi tness values.

( ),  1 , 2,  ,  t
mPbest pm m pn                     (24)

 ( )tGbest pg                (25) 

Pbest is constructed by the best results obtained in the 
related positions at iteration t. Gbest is the best result in the 
swarm at iteration t.

Step 5. New velocities and positions of the particles are 
calculated by using the Equations given in (26) and (27).

    
1 11

2 2

 
    

 
      

t
mt

m t t t t
m m m

w v c rand
v

Pbest x c rand Gbest x
                  (26)

1 1t t t
m m mx x v                 (27)

Where 1rand  and 2rand  are random numbers generated 
from U (0,1). 

Step 6. Step 3 to Step 6 is repeated until t<maxt.

Step 7. The optimal  1 2, , , pk k k  values are obtained as 
Gbest. 

Implementation

The proposed algorithm was applied to two different and 
well known data sets in order to investigate of the proposed 
method. These two data sets named “Import Data” and 
“Longley Data” were used to evaluate the performance of 
the proposed method. Import data was analyzed by [43]. The 
variables of “Import Data” are; imports (IMPORT-Y), domestic 
production (DOPROD-X1), stock formation (STOCK-X2) 
and domestic consumption (CONSUM-X3), all measured in 
billions of French francs for the years 1949 through 1959. Both 
Import data and Longley data were solved by using fi xed point 
method ([2]), iterative method ([39]), [22]’s method and the 
algorithm proposed in this paper. In the proposed algorithm, 
PSO parameters were chosen as 1 230, 0.9, 2pn w c c     
and   100maxt  . In the iterative ridge method the stopping 
criteria were chosen as 6 10 . The results of each method were 
presented in Tables 2 and 3, respectively. 

As we can see from Table 2, our proposed method 
has minimum SSE and MAPE values. And also there is no 
multicollinearity problem when “Import Data” solved by our 
proposed method. But, there is a multicollinearity problem 
when “Import Data” solved by FPRRM and IRRM methods 
because of the VIF values of these methods are bigger than 
10. Although, other methods can give smaller SSE and MAPE 
values they do not still solve the multicollinearity problem. 
Because it is clearly seen that some VIF values of these methods 
are greater than 10.

As we can see from Table 3, our proposed method has 
minimum MAPE value when compared with other methods. 
But SSE value of our proposed method is not the smallest one. 
The SSE value of OLS is smaller than our proposed methods. 
But, it is clearly seen that the OLS method has multicollinearity 
problem when “Longley Data” solved by this method. But our 
proposed method has no multicollinearity problem. 

As a result, fi nding k values for each explanatory variable 
gives better results than fi nding a single k value. And also, our 
proposed has no multicollinearity problem.

Simulation study 

Two different simulation studies are performed in this 
section of the paper in order to show the performance of the 
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proposed method in different levels of multicollinearity and 
standard deviation of error term and the superiority of the 
proposed method when compared with other methods.

The First Simulation Study: In this simulation study, 
the proposed method was compared with ridge regression 
methods given in [2,22,39] by a simulation study. The number 
of observations (n) was taken as 100, 500 and 1000; the 
standard deviation of error term ( )  was taken as 0.01 and 1 
and comparisons were made for the total 6 cases. For each case, 
1000 data set including multicollinearity problem was created.

The fi rst three independent variables were generated from 
standard normal distribution as given in Equation 28. 

 ~ 0,1   1, 2,3iX N i              (28)

The last two independent variables were generated by using 
Equation 29. Thus, it is provided to arise multicollinearity 
problem for the data set by providing a high correlation 
between independent variables 1X  and 4 X , 1X  and 5X .

     110,20 5,20 0,7  4,5iX U U X N i   
  
(29)

The observations of dependent variable were obtained using 
Equation 30. So, all the coeffi cients in the regression model are 
taken as 1.

(0, )iY X N               (30)

For each data generated in each case, 2VIF  , SSE, MAPE 
and CN values are calculated by using proposed method, the 
studies [2, 22, 39]. The formula of SSE is given in Equation 31.

^
2

1

( )
n

i i
i

SSE y y


                (31)

The most important indicator for the comparison of 
methods is that VIF and CN would be small. The methods [2] 
and [39] do not guarantee the solution of multicollinearity 
problem as seen in the numerical examples. The method [22] 
and proposed method guarantee that all VIF values are smaller 
than 10. Therefore, it is suitable to compare the proposed 
method with [22] method in terms of SSE and MAPE criteria. 

The results of median and inter quartile range (IQR) values 
were given between Tables 4-9.

When all tables are examined, it is clearly seen that 2VIF
and CN values of proposed method is lower than the other 
methods in all cases. 

However, it is seen that the proposed method produces 
lower MAPE values   compared to others despite producing 
higher SSE values. This is because the objective function of the 
proposed method may be depending to the MAPE.

The Second Simulation Study: A second simulation study 
was performed in the paper according to different levels of 
multicollinearity problem and standard deviation of error 
term. The regressors were generated by using Equations 32-36 
given by [44].

 ~ 0,1   ; 1, 2, ,   ;  1, 2, ,6 ijw N i n j               (32)

2 1/2
,6(1 ) ;

 1, 2, ,  ; 1, 2,3
   

  
ij ij ix w w
i n j

         

(33)

  , 1, 2, ,  ;  4,5ij ijx w i n j                (34)

Table 2: The comparison of VIF values, SSE and MAPE obtained from OLS, FPRRM, IRRM, [22] and proposed method for Import Data.

OLS
(k=0)

[2]
(k=0.0016)

[39]
(k=0.0042)

[22]
k=(0.0090)

Proposed Ridge Method k values obtained from 
Proposed Ridge Method

Variable S.C. VIF S.C. VIF S.C. VIF S.C. VIF S.C. VIF

X1 -0.34 186.11 -0.03 72.09 0.16 27.99 0.29 9.99 -0.07 9.03 k1 0.0190

X2 0.21 1.02 0.22 1.00 0.22 1.00 0.22 0.98 0.21 1.00 k2 0

X3 1.30 186.00 0.99 72.13 0.80 28.01 0.67 9.99 1.03 9.99 k3 0

SSE 0.0810 0.0086 0.0095 0.0103 0.0084

MAPE 0.1196 0.1097 0.1139 0.1185 0.1088

S.C.: Standardized Coeffi  cients.

Table 3: The VIF Values, SSE and MAPE values obtained from OLS, FPRRM, IRRM, [22] and proposed method for Longley Data.

OLS
(k=0)

[2]
(k=0.0003)

[39]
(k=0.0006)

[22]
(k=0.0172)

Proposed Ridge Method k values obtained from Proposed 
Ridge Method

Variable S.C. VIF S.C. VIF S.C. VIF S.C. VIF S.C. VIF

X1 0.05 135.53 -0.01 87.32 -0.01 87.32 0.25 9.99 -0.002 0.59 k1 0.1374

X2 -1.01 1788.51 -0.25 472.15 -0.25 472.15 0.34 1.55 -0.001 0.00 k2 0.7274

X3 -0.54 33.62 -0.43 10.95 -0.43 10.95 -0.28 2.55 -0.37 3.03 k3 0.0140

X4 -0.20 3.59 -0.18 2.88 -0.18 2.88 -0.11 1.94 -0.15 2.17 k4 0

X5 -0.10 399.15 -0.28 180.21 -0.28 180.21 0.16 7.32 -0.10 5.94 k5 0.0295

X6 2.48 758.98 1.88 309.82 1.88 309.82 0.46 4.07 1.39 9.99 k6 0

SSE 0.0045 0.0050 0.0050 0.0123 0.0065

MAPE 0.0002 0.0753 0.0753 0.1378 0.0826

S.C.: Standardized Coeffi  cients.
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Where ,i jw independent standard normal are pseudorandom 
numbers and 2  is theoretical correlation between any two 
explanatory variables.

Simulation study was conducted for a total of 8 cases for 

sample size is 100, (  1 00)n , standard deviation of the standard 
deviation of error term ( 0.01, 0.1,1 ,5  ) and different degrees 
of multiple connections ( 0.99,  0.999  ) (Tables 10-17). 

It is clearly seen that in the tables of the simulation Study 
2, 2VIF  and CN values of the proposed method do not change 
signifi cantly when standard deviation of error term values 
are changed. 2VIF  And CN values of the proposed method are 
increased dramatically when multicollinearity is increased. 
And also there is no a hardly ever change to be seen in the 
MAPE values of the proposed method with the reasonable 
standard deviation of error term values  0.01, 0.1   or there 
is a decrease to be seen in the MAPE values of the proposed 
method when multicollinearity is increased. 

In this simulation study, different levels of standard 
deviation of error term are also employed. As a result of this 
simulation study it is clearly seen that when standard deviation 
of error term value is greater than 1 and >1 the model has very 
big deviation from linear regression model because MAPE 
values are obtained about 60 and this value is not suitable. And 
also, it is clearly seen that in the tables of the simulation study 
2, the prediction performance of the proposed is affected quite 
negatively when standard deviation of error term is increased. 

Discussion

There are some valid assumptions to create a model in 
multiple regression analysis. One of them is that it should not 
be multicollinearity problem among independent variables. 
Ridge regression method is often used in the literature when 
there is a multicollinearity problem among independent 
variables.

But, ridge regression has also some problems. One of the 
most important problems in ridge regression is to decide what 

Table 4: Simulation results for n=100, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 0.00001259 0.00001259 0.00001363 0.00001576

IQR 0.00000756 0.00000756 0.00000931 0.00001270

MAPE
Median 0.00134451 0.00134451 0.00127049 0.00112317

IQR 0.00106196 0.00106196 0.00089539 0.00059409

2VIF
Median 0.01140365 0.01140365 0.01139037 0.01127907

IQR 0.01396126 0.01396126 0.01394571 0.01372089

CN
Median 34.35277075 34.35277075 34.33591354 34.27939908

IQR 24.18839643 24.18839643 24.11194855 23.79666414

Table 5: Simulation results for n=100, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 0.11927554 0.11927554 0.12470745 0.12622844

IQR 0.07784014 0.07784014 0.08136102 0.08116543

MAPE
Median 0.13146684 0.13146684 0.12731270 0.12122859

IQR 0.10275617 0.10275617 0.09496648 0.08890188

2VIF
Median 0.01265217 0.01265217 0.01055620 0.01031630

IQR 0.01422383 0.01422383 0.01250313 0.01081028

CN
Median 36.49713949 36.49713949 34.82762683 34.19546839

IQR 23.90916228 23.90916228 22.72993530 22.03645100

Table 6: Simulation results for n=500, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 0.00006273 0.00006273 0.00006657 0.00007443

IQR 0.00003939 0.00003939 0.00004521 0.00005199

MAPE
Median 0.00176972 0.00176972 0.00171829 0.00155416

IQR 0.00120199 0.00120199 0.00109733 0.00082172

2VIF
Median 0.00047198 0.00047198 0.00047191 0.00045946

IQR 0.00053460 0.00053460 0.00053380 0.00052792

CN
Median 35.12943563 35.12943563 35.12640617 34.87031035

IQR 23.51132659 23.51132659 23.49173308 23.41623957

Table 7: Simulation results for n=500, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 0.62581119 0.62581119 0.62641000 0.62643082

IQR 0.40863631 0.40863631 0.40571868 0.40572352

MAPE
Median 0.17897917 0.17897917 0.17762626 0.17610858

IQR 0.13148961 0.13148961 0.12861139 0.12632016

2VIF
Median 0.00047277 0.00047277 0.00044964 0.00044955

IQR 0.00054171 0.00054171 0.00050993 0.00050497

CN
Median 35.15161545 35.15161545 34.73612619 34.78910967

IQR 24.17568961 24.17568961 23.75550252 23.71548866

Table 8: Simulation results for n=1000, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 0.00012916 0.00012916 0.00013700 0.00014808

IQR 0.00008243 0.00008243 0.00008840 0.00009883

MAPE
Median 0.00193169 0.00193169 0.00186306 0.00173776

IQR 0.00128107 0.00128107 0.00108223 0.00093393

2VIF

Median 0.00011623 0.00011623 0.00011571 0.00011366

IQR 0.00012895 0.00012895 0.00012871 0.00012574

CN
Median 34.73295370 34.73295370 34.68869608 34.57542791

IQR 22.68009238 22.68009238 22.68237746 22.50717173

Table 9: Simulation results for n=1000, 0.01 

Method [39] [2] [22] Proposed Method

SSE
Median 1.28108799 1.28108799 1.28125942 1.28152484

IQR 0.82914889 0.82914889 0.82826388 0.82752823

MAPE
Median 0.19569205 0.19569205 0.19433497 0.19348508

IQR 0.12670340 0.12670340 0.12694189 0.12641619

2VIF
Median 0.00011531 0.00011531 0.00011361 0.00011275

IQR 0.00012654 0.00012654 0.00012256 0.00012304

CN
Median 34.91165352 34.91165352 34.64929969 34.61115844

IQR 22.82979136 22.82979136 22.64350810 22.69768492



018

Citation: Bas E, Egrioglu E, Uslu VR (2017) Shrinkage Parameters for Each Explanatory Variable Found Via Particle Swarm Optimization in Ridge Regression. 
Trends Comput Sci Inf Technol 2(1): 012-020. DOI: http://dx.doi.org/10.17352/tcsit.000005

the shrinkage parameter (k) value will be. There are many 
studies in the literature to fi nd the optimal k value. In these 
studies, this k value was found to be a single value. But in 
this study, we found different k values corresponding to each 
explanatory variable instead of a single value of k by using 
a new algorithm based on particle swarm optimization. And 
also, the proposed method was supported by two simulation 
studies. Besides, it is an important novelty for ridge regression 
literature.

In the future studies, different artifi cial intelligence 
optimization techniques can be used to fi nd these k values for 
each explanatory variable.
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