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Abstract

Speaker recognition has been studied for many years and has been a hot topic. This paper 
presents an overview of speaker recognition methods, which include the classical and the state-of-art 
methods. According to the modular components of speaker recognition system,  we fi rstly introduced 
the fundamentals of speaker recognition, which are mainly divided into two parts: feature extraction and 
speaker modeling. The most commonly speech features used in speaker recognition were elaborated 
fi rstly. In particular, the recent progress of deep neural network  proposes a new approach of feature 
extraction and has become the technology trend. Secondly, the classical approaches of speaker 
recognition model were introduced, and elaborated the recent progress of deep learning speaker 
recognition. This paper especially provides an in-depth analysis on end-to-end model which consists of a 
training component to extract features, an enrollment component to training the speaker model, and an 
evaluation component with appropriate loss function for optimization. The fi nal part concludes the paper 
with discussion on future trends.
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Introduction

Speaker recognition bas become the most popular methods 
in biometric identifi cation fi eld, because the voice is the most 
common signal and the simplest to acquire [1,2]. With the wide 
application of artifi cial intelligence machines, researchers 
have found that voice communication is the best way to 
communicate between humans and machines. In access control 
fi eld, telephone services of transaction authorization fi eld, and 
speaker diarization fi eld, speaker recognition has been applied 
extensively [3,4]. In general, the speaker recognition system 
can fall into two categories: speaker identifi cation (SI) and 
speaker verifi cation (SV). Speaker identifi cation is the process 
to determining who is talking from a group of people, and the 
system must perform a 1: N classifi cation. Speaker verifi cation is 
the task to determining whether a person is who he/she claims 
to be (a yes/no decision). Generally, speaker identifi cation can 
be divided into “closed-set” and “open-set”, it is supposed 
that the training voice come from a fi xed set of know speakers, 
thus the task is referred to as closed-set identifi cation. Instead, 
it is assumed that training voice are not known to the system, 
that is refered to as open-set identifi cation [5-7]. 

The speech used for speaker recognition can be grouped 
into text-dependent (TD) and text-independent (TI). In the 
text-dependent (TD) application, the recognition system has 
prior knowledge of the text to be spoken and it is expected 
the recognition must be pronounced according to the prior 
knowledge. Because of prior knowledge, the text-dependent 
(TD) recognition can greatly improve performance of 

recognition system. In a text-independent (TI) application, 
there is no fi xed text for the recognition system to be spoken. 
Since there is no prior knowledge, text-independent speaker 
recognition is more diffi cult but also more fl exible. As the 
speech recognition accuracy improved and the speaker and 
speech recognition system rapid develop, the distinction 
between text-independent and text-dependent application 
have been decreased [8-13].

The methods of speaker recognition’s research and 
development have been studied over fi ve decades, which still is 
an active area. The methods of speaker recognition are spanned 
from the original human aural spectrogram comparisons 
to simple template matching, to dynamic time-warping 
approaches, to more modern statistical pattern recognition 
approach and to the most popular deep learning in recent years.
[14-18]. Especially noting that, the methods applied to speech 
recognition have also been often used in speaker recognition 
(SR). The corpora’ research and development are from small, 
private corpora to large, open source corpora. This domain has 
natured to the degree that commericial applications of SR have 
been growing steadily since the mid-1980s, and many large 
companies have this technology, such as Google, Baidu, IBM 
and Microsoft etc have set up speech research groups. 

This paper is a general overview of speaker recognition 
technologies, that introduce the classic techniques from 1987 
until today. Meanwhile, we focus on the recent techniques that 
shifted from deep neural network models to end-to-end models. 
The remaining of this overvies is organized as follow: section 
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2 introduce the development of speaker recognition. Section 3 
introduce fundamentals of speaker recognition. Section 4 and 
5 elaborate feature extraction and speaker modeling process. 
Section 6 is then devoted to the decision method. The end-to-
end model was introduced with emphasis in section 7. Finally, 
the conclusion and the future research trends of recognition 
technology are outlined in Section 8. 

Overview

Speaker recognition can be put into four stages. The 
fi rst stage was from 1960s to 1970s, the research focused on 
feature extraction and template matching technique. In 1962, 
Kesta at Bell LABS proposed spectrogram method for speaker 
recognition [19]. In 1969, Luck proposed Cepstrum technology 
[20]. In 1976, Atal et al. proposed the Linear Predictive 
Cepstrum Coeffi cients (LPCCs), which improved the accuracy 
of speaker recognition [21]. In terms of the model, template 
matching was mainly adopted in the 1960s. In the 1970s, 
Dynamic Time Warping (DTW) and Vector Quantization (VQ) 
technology became the mainstream.

The second stage was from the 1980s to the 1990s,  s peech 
statistical models are beginning to be applied to speaker 
recognition [22-24]. In terms of feature extraction, Davis 
proposed Mel-Frequency cepstrum parameter (MFCC) for 
speaker recognition which becomes the mainstream feature 
in the following years [25]. In terms of models, the classical 
approach has been devided into two types. The fi rst types are 
based on vector quantization and dynamic time wrapping, 
which are referred to as template-based models. The second 
types are stochastic models which based on Gaussian Mixture 
Model (GMM) [26] or Hidden Markov Model (HMM) [27,28]. 
The majority of the state-of-the-art SR systems adopted MFCC 
as features and Gaussian mixture model (GMM) was used for 
speaker modeling [29-31]. The Gaussian Mixture Model has 
been proved extremely successful in TI speaker recognition. 

The third stage around 2000, GMM-based speaker 
recognition methods has been the most commonly used and 
which proposed by Reynolds, which include the classical 
Maximum a-Posteriori (MAP) adaptation of universal 
background model parameters (GMM-UBM) [32] and support 
vector machine (SVM) classifi cation of GMM supervectors 
(GMM-SVM) [33]. 

In the training phase, the MAP adaptation framework 
provides a way of incorporating prior information by adapting 
the parameters of GMM from the UBM. The framework is 
available in dealing with problems posed by sparse training 
data [34]. The SVM uses a non-linear function to map data on 
to a higher (possibly infi nite) dimensional space and then fi nds 
the best hyper-plane separating the two classes in this space 
[34,35]. Since the SVM is basically a two-class classifi er. 

However, in terms of data, the high accurate rate only can be 
achieved under ideal conditions and is appropriate for practical 
application under matched channel conditions. Instead, the 
performance can degrade signifi cantly under mismatched 
conditions. After 2010, 

The barrier associated with compensating for these 
differences have offered an active research focus for the SV 
fi eld and some of the most advanced channel compensation 
schemes include joint factor analysis (JFA) [36], i-vectors 
[37], or nuisance attribute projection (NAP) [38]. Meanwhile, 
using the fusion information from different sourec of evidence, 
which can improve system performance.

The fourth stage began in the early 2000s (2010), deep 
learning promotes the development of speaker recognition. At 
this stage, the development of speaker recognition technology is 
drivern by the commercial needs, while deep learning, big data 
and genetal graphics computing uint (GPU) also promote the 
development of speaker recognition. The various deep neural 
networks based were proposed for speaker cognition methods 
[39]. At the feature extraction of frame-level, researchers apply 
deep neural networks to extract Bottlenect (BN) features [40], 
d-vector [41], j-vector [42], and x-vector [43]. At the model-
level, the research focuses on various deep neural networks 
(DNNs) for acoustic feature modeling. The decisions were 
maked utilize the distance between the target feature vector 
and the test feature vector. But speakers are often unknown 
during system training, this makes a big challenging for SR. 

Whether the i-vector system, or feature vector extracted 
from DNN system, it usually consists of three modules, the 
fi rst is the training module which calculate the representations 
of speaker, the second is enrollment module which estimate 
the speaker model, the last is evaluation module which have 
a n appropriate loss function for optimization. A new approach 
has been proposed in which all the modules can be jointed 
together. Compared with the present methods, such an end-
to-end(E2E) method direct modeling utterances and directly 
joint estimation, which result in better and more compact 
models. Moreover, this approach ofter results in properly 
simplied systems need fewer concepts and heuristics [44].

Fundamentals

A SR system can typically be divided into three parts as shown 
in fi gure 1. The front-end is the processing of the raw speech 
and then obtaining a set of speaker discriminate features which 
represent the speaker’s characteristics (section 4). The back-
end is the modeling and decision-making, training a speaker 
model using the extracted features (section 5) and decision-
logic model is used to produce recognition scores by comparing 
features from different utterances (section 6). As stated above, 
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Figure 1: The typical SR system.
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the latest end-to-end neural speaker recognition systems were 
proposed which combining the above two components (front-
end and back-end) (section 7). 

The basic principles of SR are shown in the fi gure 2, the top 
fi gure is the enrollment process, while the below fi gure is the 
recognition process. The function of feature extraction module 
is to transforming the raw signal into feature vectors. In the 
enrollment module, the speaker module is trained utilizing 
the feature vectors of the tagged speaker. In the recognition 
module, the feature-vectors fi rstly extracted from the 
unknown speaker’s utterances are compared with the model 
in the database of system to giving a similarity score. The fi nal 
decision of SR model is maked using scoring standard. 

Short-term spectral features

The most commonly features in speaker verifi cation 
is the Mel frequency cepstral coeffi cients (MFCCs) [47], 
Linear prediction cepstral coeffi cients(LPCCs) [48], and the 
perceptual linear prediction coeffi cients(PLPs) [49]. In speaker 
and speech recognition system, the most fundamental process 
is that of extracting feature-vector of uniformly spaced across 
time from the time-domain sampled acoustic waveform, the 
processes as follows:

1. Pre-emphasis: Pre-emphasis is essentially a high-pass 
fi lter which applied to the waveform: (t) (t) 0.97 (t 1)y x x    
where (t)x  is the input speech data and (t)y  is the output.
The purpose of pre-emphasis is to emphasises the higher fre-
quencies and fl attens the spectrum of the signal. Meanwhile, 
pre-emphasis can elimanate the effects of vocal cords and lips 
during vocal production. 

2. Framing: The frame is the collection of N sampling 
points. The purpose of framing is to divided the time-domain 
waveform into overlapping fi xed duration segments, and 
typical the duration values of a frame is from 20 ms to 30 
ms (usually 25 ms). In order to avoid large changes between 
adjacent frames, there will be an overlap between two adjacent 
frames. Usually, the values of overlap are about 1/2 or 1/3 of a 
frame.

3. Windowing: In order to increase the continuity of the 
left and right sides of the frame, each frame is multiplied by 
a window function. The window functions usually include 
hamming window, hanning window, and rectangular window, 
hamming windows are usually used. Suppose the signal is 

(n), n 0,1, N 1, NS    af t er framing, where the N is the 
length of a frame. Then each frame is multiplied by hamming 

windows, 
' (n) (n) W(n)S S  , where 

2W(n) 0.54 0.46 cos ,0 1
1
n

n N
N
        

.

Mel fre q ucency cepstral coeffi cients (MFCCs): MFCC has 
been widely used to capture the speech-specifi c characteristics 
for decades in speech processing. MFCC features are derived as 
follows:

1) The transformation of the signal in the time domain is 
usually diffi cult to observe the characteristic of the signal, the 
frame of N samples in the time domain is transformed to the 
frequency domain. FFT provides a faster implementation of the 
Discrete Fourier Transform (DFT). On the setting of N samples 
DFT will have the following coeffi cients.

 


 

1

0
/2 0,)()( N

n
Nkj

a NkenxkX             (1)

where )(nx is the input speech signal. N is the number of 
points in the Fourier transform.

2) Mel frequency warping: The Mel scale is related to 
perceived frequency, or pitch of a pure tone to its actual 
measured frequency. Humans are more sensitive to low-
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Figure 2: The components of speaker recognition system.

Feature Extraction

The process of feature extraction is to transforming the raw 
speech signals into some types of abstract expression, namely 
feature vectors, in which the properties of specifi c speaker 
are emphasized. In speaker recognition system, the features 
can be grouped into two categories: low-level infromation 
and high-level information. While all of these information 
conveys useful information for speaker’s identity. In the last 
forty years of speaker recognition, short-term and lower-level 
acoustic information exclusively is the most useful feature, 
such as cepstral features. For the high-level information, 
many researches have investigated the potential benefi ts of 
high-level characteristics of speech [45]. In contemporary 
speaker recognition applications, high-level information 
needs suffi cient training data and very large memory. In the 
situation of high computational cost, the high-level features 
received much attention [46]. Hence the most advanced SR 
system still uses the low-level information. The reporter in 
this paper focuses on capturing the low-level information by 
short-term spectral features which are the simplest, yet the 
most discriminative.
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frequency signals than high frequencies and thus are much 
better at discerning small changes. Incorporating the Mel-
scale makes our features match more closely what humans 
hear. The formula of Mel-scale is:

)700/1ln(1125)( ffM               (2)

The windowed signal spectrum is multiplied with Mel fi lter 
bank coeffi cients. 

3) Discrete Cosine transform: The MFCC coeffi cint is 
obtained by discrete cosine transform(DCT):

Ln
M

mn
msmC

N

m
,....2,1),)5.0(cos()()( 1

0



 



                (3)

The above logarithm energy is introduced into the discrete 
cosine transform to obtain the Mel-scale Cepstrum parameter 
of L order, L order is the MFCC coeffi cient order, L usually take 
12-16. Here M is the number of triangular fi lter. An overview of 
MFCC computation is shown in fi gure 3.

[50,51]. Auto-regressive moving average models corresponding 
to the formants and anti-formants are used to model vocal tract. 
The vocal tract features were extracted using extended Kalman 
smoothing, and these were used to analyzing depression 
[52,53]. The voice source was considered to carry speaker-
specifi c information, since voice source features characterize 
the glottal excitation signal and fundamental frequency, and 
the glottal features are not directly measurable due to effect of 
the vocal tract fi ltering. It is assumed that the glottal source 
and the vocal tract are independent of each other. 

Firstly, the linear prediction model is used to estimated 
the parameters of vocal tract, then the original waveform is 
inverse-fi ltered to obtain an estimate of source signal. There are 
various methods  f or inverse fi ltering have been implemented 
and evaluated, meanwhile, feature extraction methods based 
on the glottal fl ow estimate also have been proposed [54-56].

From the literature, voice source features are not as 
discriminative as vocal tract features, but the integration of 
these two complementary features can improve accuracy [57]. 
The literature [58], also shows that the voice source features 
need less training and testing data, which compared to the 
vocal tract features need the amount of data [59]. The reason 
is that vocal tract features depend on the phonetic content 
and thus suffi cient phonetic coverage is required for both the 
training and test utterances. Voice source features, in turn, 
depend much less on phonetic factors.

Spectro-temporal features

The formant transitions and energy modulations of 
spectro-temporal signal contain effective speaker-specifi c 
information. A common way to contain some tem p oral 
information to features is through fi rst-order and second-order 
time derivative estimates, known as delta ( ) and double-
delta (

2 ) coeffi cients, re s pectively [60]. They are calculated 
as the time differences between the adjacent vectors feature 
coeffi cients and usually appended with the base coeffi cients on 
the frame level. The most commonly used is 13 MFCCs with 
  and 

2 coeffi cients, implying 39 features per frame. The 
spectro-temporal features were applied to SR, showing great 
performance when integrated with conventional MFCCs [61]. 
The energy is very easy to calculate. It defi ned as follows:









 



lN

i
ii lsE

1

2)(log
                

                  (5)

where the )(lsi and lN respectively are the thi  voice 
information on the fl ame l  and the number of samples on the 

Pre-emphasis Windowing FFT 

Filter-bank LOG|   | DCT MFCCs 

Speech 

Figure 3: Overview of MFCCfeature extraction.

Linear prediction cepstral coeffi cients (LPCCs): The linear 
prediction coeffi cients attempts to describe a speech signal ~

[n]s at time n  as a linear combination of P past signal values 
as follows

 
~

1
[n]

P

k
k

s a s n k


 
                                (4)

where ka are the linear prediction coeffi cients. The coeffi cients 
determined by minimising the mean-squared prediction error 
between the speech sample, s[n] , and its linearly predicted 
value, 

~
[n]s

 is determined by the Levinson-Durbin algorithm. 
While the coeffi cients of LP model form the basic feature set 
of SR systems, in order to more sui  for speaker modelling and 
classifi cation, they are usually converted to a more appropriate 
representation (i.e. cepstral coeffi cients). LPCCs are computed 
as a Fourier or cosine transform from the log-magnitude 
spectrum that is estimated through the frequency response of 
the all-pole fi lter defi ned by the prediction coeffi cients.

Perceptual linear prediction coeffi cients (PLPs): Based on 
the psychoacoustic principles such as critical band analysis 
(Bark), equal loudness pre-emphasis and intensity-loudness 
relationship, the PLPs is presentes. The PLP feature extraction 
as shown in fi gure 4.

Vocal tract features and voice source features 

The traditional linear source-tract model can decompose 
the voice into two parts: the vocal tract and the voice source 
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Figure 4: Overview of PLP feature extraction.
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fl ame l . To calculate the   and 
2 , the following formula is 

used:








 


i

l

N

i

N

i
itit

i

xxi

1

2

1

2

)(
= 

      
                                (6)

where   is a delta coeffi cient, from frame t  calculated in 
terms of the static coeffi cients itx   to itx  . A typical value for 
N is 2. 

2  coeffi cients are computed in the same way. 

i-vector features

The i-vector is developed from the joint factor analysis 
(JFA) [62,63]. The i-vector can convert the variable length 
sequence of the original speaker’s speech information to fi xed 
dimension. In general, the super-vector M represent a speaker 
utterance, which obtained from the cascading of mean-
vectors of all mixture components in the GMM. This speaker-
dependent super-vector can be decomposed as:

M m Vy Ux Dz                         (7)

where m is a speaker and session-independent supe-rvector, 
which generated from UBM. The matrix  V  and D  both defi ne 
the subspace of speaker, and U defi ne a session sub-sapce. y 
and x represent the factors of speaker and channel respectively. 
Dz acts as a residual to compensate for the information of 
speaker that may not be caught by Vy.

The literature [64], found that the factors of channel also 
include speaker infromation, thus proposed a single subspace 
called total variability, which is known as the i-vector approch. 
The new speaker and session-dependent GMM super-vector is 
redefi ned as:

M m Tw                   (8)

where T  is a low rank matrix of speaker and session variability, 
and the total factor w  is called identity vector, named i-vector 
[65].

Features based on deep neural networks

In 2006, deep learning is proposed by Hinton [66]. In 
recent years, DNNs has been successfully applied in speech 
recognition because of the the powerful feature extraction 
capability [67]. In the method for speaker recognition, DNN 
is often used to predict the speaker class for give a frame of 
speech. Deep speaker verifi cation methods utilize various 
DNN structures to learn speaker features which are known as 
speaker representation and contain information of speaker 
that can be used for categorization. For Google’s work, a DNN 
is trained to map frame-level features to the corresponding 
speaker identity target. During enrollment process, the average 
value of the last DNN hidden layer serves as the speaker model, 
which are defi ned as a deep vector or ‘d-vector’ [68]. In the 
evaluation phase, the decision was made by using the distance 
between the target d-vector and the test d-vector. Many 
researchers compared with the baseline i-vector model and 

replace the i-vector model [69,70] investigate the use of DNNs 
for a small foot-print TD speaker verifi cation task, the trained 
DNN is used to extract speaker specifi c features from the last 
hidden layer. MIT Computer Science and Artifi cial Intelligence 
Laboratory investigate the use of DNNs to generated a stacked 
bottleneck (BN) feature representation for low-resourespeech 
recognition and the bottleneck is a small hidden layer 
placed in the middle of the network [71,72] described the 
development of a DNN bottlenenck feature i-vector system and 
demonstrated substantial performance gains [73]. Compares 
to the performance of deep locally-connected network (LCN) 
and convolutional neural network (CNN) for text-dependent 
speaker recognition. Speaker recognition is very sensitive to 
the duration of speech, and the recognition performance of 
short-time speech is a key point to decide whether it can be 
commercialized. Because of this, the x-vector emerged in this 
context. The DNN maps variable-length utterances to fi xed-
dimension embeddings, which were called x-vectors. The 
vectors are extracted from a TDNN and utilized like i-vectors. 
David et al. used data augmentation to improve performance of 
DNN embeddings for SR [74]. 

Sandro Cumani ect. proposed a speaker modeling approach 
which extracts a compact representation of a speech segment, 
similar to the speaker factors of JFA to i-vectors, refered to as 
“eigenvoice-vector”, or “e-vector” for short. The process of 
estimating e-vector space is similar to i-vector training, and 
generates a more accurate speaker subspace [75]. The e-vect o r 
model is similar to the i-vector model:

s m Ew                (9)

where s  and m  are the GMM supervector and UBM mean 
supervector respectively and w  is a d  dimension random 
vector, with standard normal prior distribution. Since the goal 
is that E  spans the same subspace of V , we defi ne E  as:

E VA                (10)

where A  is a full rank d × d matrix. Matrix E  spans the same 
subspace of V  because its columns are a linear combination of 
the columns of V . The specifi c calculation method reference 
[76].

Speaker Modeling

As above, the traing speech is passed through the front-end 
processing step (feature extraction) and the next step is the 
build a speaker model. There are many modeling techniques 
that have been utilized in speaker recognition systems. The 
choice of model is largely depended on the temporal tec hinique 
development level, the desired performan c e, easy to train and 
update, and the computation consideration.  The methods of SR 
model can be grouped into three categories:

1. Template matching: The model contains a   template which 
is a sequence of feature vectors from a fi xed phrase. During 
verifi cation, dynamic time warping (DTW) is used to align 
and measure the similarity between the test phrase and the 
speaker template to generate matching scores. This approach is 
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utilized almost completely for text-dependent applications. In 
speaker recognition system, the most commonly used template 
maching methods are vector quantization (VQ).

2. Probabilistic model: In the training process, the effective 
feature vectoris extracted from one or more speakers and the 
corresponding mathematical model is estabilished according 
to its statistical characteristics. The model can describe the 
distribution of the speaker’ feature vector. In the recognition 
process, the sequence of test speech is matched with the 
trained speaker model. The similarity between the test speech 
and the trained model is calculated from the perspective 
of probability statictics. In speaker recognition, the most 
commonly used models are Gaussian mixture models (GMMs), 
adapted Gaussian mixture models and hybrid model.

3. Neural networks: The specifi c model utilized in this 
technique can take many forms, the most commonly utilized 
in SR is the DNN, such as DCNN, LSTM, DBM etc. The main 
difference between the neural network model and other 
approaches described is that these models are trained to 
discriminate between t h e modeled speaker and some optional 
speakers. 

Classical approaches 

Vector quantization: The vector quantization is one of 
the simplest TI speaker models which is fi rstly proposed 
in the 1980s [77,78]. A set of short-term training feature-
vectors for speaker can be utilized directly to represent the 
basic characteristics of the speaker. However, this direct 
representation is impractical when the number of training 
vectors is huge. Because the amount of memory and computation 
required become very large. Therefore, an effective method to 
compress training data is found by using vector quantization 
techniques. In this method, the codebooks of VQ include the 
numerical representation of features which are produced in 
the training phase by clustering the feature vectors of each 
speaker. We have utilized standard LBG algorithm to cluster a 
group of L training vectors into a group of M codebook vectors. 
In the recognition phase, each reference speaker’ codebook 
is used to carry out vector quantization of input utterance, 
and VQ distortion accumulated in the whole input utterance 
is utilized for recognition and determination. The literature 
[79,80] offers competitive accuracy when compared with the 
probability model.

Gaus s ian Mixture Model (GMM): GMM is a stochastic 
model that can be deemed as the extend of the VQ model, in 
which the clusters are overlapping. x  represents the feature-
vector which have D-dimensional, the mixture density of 
speaker s is expressed as follow:

   
1

M
s s

s i i
i

p x p b x


                 

(11)

The density is th e  weighted linear combination of M 
component single model Gaussian den s ities,  s

ib x , each 
parameterized by a mean vector,  s

iu x , and covariance 
matrix, 

s
i ;
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The mixed weights
s

ip , the constraint conditions are furture 

satisfi ed 
1

1
M

s
i

i

p


 , Collectively, the parameters of speakers 

density model are denoted as  , , , 1,s s s
s i i ip u i M     . 

Maximum likelihood speaker model parameters are estimated 
using the iterative Espectation-Maximization (EM) algorithm 
[81]. In each EM iteration, the following reestimation formula is 
utilized to ensure the monotonic increase of model likelihood:
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Weighted Means: 
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Variances: 
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Gaussian mixture model is a stochas t ic model which has 
become the reference method in SR [82,83]. The literature [84], 
discussed the application of GMMs to speaker modeling in 
detail. The advantages of GMM is that has strong representation 
power for feature vector. Around 2000s, GMM-based systems 
were successly applied to the annual NIST speaker recognition 
evaluations (SRE). The GMM-based system has consistently 
produced state-of-art performace [85,86].

However, in turn, the parameter size also expands 
proportionately. Large scale variables make the training data 
unable to make GMM fully trained. Another disadvantage is 
that in higher-levels information about the speaker conveyed 
in the temporal speech signal are not utilized. Moreover, due 
to the relatively limited data that can be used in the speaker 
recognition system, when large amounts of parameters are 
estimated, there will be overfi tting. Therefore, a more general 
model is proposed for speaker recognition. 

Gaussian Mixture Model-Universal Backgroud Model 
(GMM-UBM): As discussed earlier, it is import a nt to adapt 
acoustic models to new operating conditions because of data 
variability due to different speakers, environments, speaking 
styles and so on. The MIT Lincon Laboratory [87], adopting 
bayesian adaptation of speaker models from a universal 
backgroud model and handset-based score normalization. The 
system is refered to as the Gaussian Mixture Model-Universal 
Backgroud Model (GMM-UBM) [88] fi gure 5.

The whole GMM-UBM consists of three stages:

1) UBM training: In the TI speaker verifi cation, training 
a UBM using a large number of non-target speakers. It can 
represent the distribution of general acoustic features of 
TI speaker recognition. The parameters are trained with the 
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iterative EM algorithm and require unlabled data which contain 
different people, differernt text and different channels. 

2) Enrollment stage: In this stage, the target speaker model 
is obtained by adaptive UBM parameters using the target 
speaker’s enrollment speech and Maximum a Posteriori (MAP) 
adaptation. This adaptation would adjust the par a meters of 
GMM mixtures which can be observed in the enrollment phase. 
The outputs of this stage are dependent on the speaker’s 
models.

3) Verifi cation stage: In this stage, the likelihood ratio 
decision method is utlized in the Verifi cation phase. Suppose 
the O  represents the extracted feature from the test utterance 
of speaker s , suppose that:

oH :O  is from the target speaker s

1H :c is not from the target speaker s

The decision is made according to the likelihood ratio as 
follow:

 
 

0 0

11

1 log
p O H Haccept

HacceptT p O H





   

                 

(16)

where  ip O H , 0,1i  , is the probability of hypothesis iH , 

which can be calculated using the function of probability den-
sity for O  given the target speaker GMM model or the impostor 
GMM model. During the testing phase, the UBM model typi-
cally acts as an impostor model. T shows the number of frames 
in observation O . 

The whole procedure of this method is easy to implement, 
the literature [89], obtain statisfactory performance in TD 
speaker verifi cation and literature [90], proposed the text-
independent speaker Verifi cation system.

Inspired by the joint factor analysis theory, Dehak [91], 
proposed to extract a more compact vector called i-vector from 
mean supervector of GMM. The i-vector is equivalent to the 
identity of the speaker. As discussed earlier [92], presented a 
new speaker verifi cation system where factor analysis is utilized 
to defi ne a new low-dimensional space that models both 
speaker and channel variabilities [93]. Presented a straight-

forward extension of the standard i-vector approach and show 
that the low-dimensional representation of utterances can be 
successfully used in TD speaker verifi cation. 

Deep neural network

In 2006, Hinton proposed deep learning aigorithms and 
deep neural networks. There is a wave of deep learning in 
industy and academia, and have achieved great success in the 
fi eld of speech recognition and image processing. The success 
use of i-vectors in speaker recognition and deep learining 
techniques in speech processing applications has encouraged 
the research community to combine those techniques for 
speaker recognition. A possible use of deep learning techniques 
in speaker recognition is to combine them with the state-of-
the-art i-vector approach. Many researchers compared to the 
baseline i-vector model and replace the i-vector model. 

Two kinds of combination can be considered. Deep learning 
techniques can be used in the i-vector extraction process, or 
applied as a backend. Like the literature [94], extracted the 
feature from Deep Belief networks (DBN) and combined the 
MFCC features achieve better performance and [95],  proposed an 
impostor selection algorithm and a universal model adaptation 
process in a hybrid system based on deep belief networks (DBN) 
and deep neural networks (DNN) to discriminatively model each 
target speaker [95]. Used DNN instead of the GMM to extract 
the i-vector. The result shows the DNN approach signifi cantly 
improved the i-vector speaker recognition systen as compared 
to the traditional UBM-GMM approach [97]. Proposed the use 
of DNN senone (context-dependent triphones) posteriors for 
computing the soft alignments, which resulted in remarkable 
reductions in speaker recognition error rates [98]. Proposed a 
supervised GMM-UBM based on DNN posteriors, which have 
been successfully evaluated telephony speaker recognition. 
Speaker recognition based on deep neural network is the focus 
of current research and the trend of future research. 

Decision Logic

In the speaker recognition, the gene r al approach used in 
the speaker recognition system is to apply a likelihood ratio 
to determine if the claimed speaker is to be identtifi ed. For an 

utterance  1, TX x x  and a claimed speaker identity with 

corresponding model C , the likelihood ratio is 

 
 

 
 _

PrPr ker
Pr ' ker Pr

c

c

XX is from the claimed spea
X is t from the claimed spea X




   

              
(17)

Applying Bayes’ ru l e and discarding the constant prior 
probabilities for claimant and imposter speakers (they are 
accounted for in the decision threshold), the likelihood ratio in 
the log domain becomes

     log logC
C

X p X p X                   (18)

The term  Cp X  is the likelihood of the utterance given 

which is from the claimed speaker and  
C

p X  is the likelihood 

MAP 
Adaptation GMM-UBM 

GMM-Vector 
Feature 

Extraction 

Input Utterance 

Figure 5: The Structure of GMM-UBM in Speaker recognition.
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of the utterance given that is not from the claimed speaker. The 

likelihood ratio is compared to a threshold  .

 
, accept

X
reject





   ，

     
                   (19)

The likelihood ratio essentially measures how much better 
the claim’s model scores for the test utterance, which compared 
to some non-claimed model. The decision threshold is then 
set to adjust the trade-off between rejecting true register 
utterances (false rejection errors) and accepting unregistered 
utterances (false acceptance errors).

The terms of the likelihood ratio are computed as follows. 
The likelihood of the utterance given the claimed speaker’s 
model is directly computed as 

   
1

1log og
T

C t
Ct

p X p X
T

 



 
    

                 
(20)

the 
1
T

 scale is used to normalize the likelihood for utterance 

duration.

After 2012, the mainstream algorithm is from statistics-
based machine learning to deep learning, Deep neural network 
(DNN)-based bottleneck feature, d-vectors, x-vectors, and 
j-vectors tend to appear successively. There are two approaches 
generally to solving decision: the one for similarity, the other 
for back-end classifi er. There are two methods to calculating 
similarity, the fi rst method is cosine similarity, the larger 
the value is, the higher the similarity will be, as adopted by 
Baidu Deep Speaker. Another method is Euclidean distance, 
the smaller the value is, the higher the similarity will be, as 
adopted by Facenet. The back-end classifi er is used to produce 
recognition scores b y   comparing vectors from different 
utterances. The most commonly used back-end classifi er is 
SVM and probabilistic linear discriminant analysis(PLDA).

End-to-end modeling 

In previous studies, the speaker recognition is divided into 
two parts, one is the front-end feature extraction (the part 4), 
the other is the back-end speaker modelling (the part 5) and 
dicision-making (the part 6). But since 2006, K. Q. Weinberger 
etc. proposed the concept of triplet loss, which is a kind of loss 
function in deep learing,   and is used to training samples with 
small differents. The training data includes anchor sample, 
positive sample and negative sample. In order to achieve the 
similarity calculation of sample by optimazing the distance 
between the anchor sample and the positive sample is smaller 
than the distance between the anchor sample and the negative 
sample [99]. The triplet loss was fi rst applied in face recognition 
[100]. Inspired by the advancements in triplet loss for FaceNet, 
the end-to-end model is proposed and fi rst applied in speaker 
recognition. 

In 2016, Georg Heigold etc. proposed an end-to-end text-
dependent speaker verifi caiton system, which applied a Deep 

neural network (DNN) with a locally-connected layer followed 
by fully-connected layer as the baseline DNN and a long short-
term memory recurrent neural network (LSTM) with a single 
output [101]. The architecture is optimized using the end-to-
end loss:

2 log (target)e el p                                (21)

where

 target ,accept reject
, 

      1
1 exp ,p accept wS X spk b


    and

   1p reject p accept  . The end-to-end system 

will result in better accuracy without the need for heruistics 
and postpocessing steps. Based on the literature [102], and the 
end-to-end system proposed by G. Heigold and researches 
from Google Inc., David Snyder etc. proposed an end-to-end 
text-independent speaker verifi cation system. The research 
showed that neural network-based end-to-end system is 
genetally applicable to verifi cation tasks and the end-to-
end outperformed i-vector model [103]. Herv´e Bredin fi rstly 
applied triplet loss to speaker turn embedding, which also fi rst 
used Long Short-Term Memory recurrent networks in speaker 
turn embedding [104]. Microsoft Coporation is inspired by 
recent advancements in both face recognition and speaker 
recognition, Chunlei Zhang etc. present a novel end-to-end 
text-independent speak e r verifi cation system, which is referred 
to as Inception-resnet-v1 network and apply the triplet loss 
function to optimize the entire system [105]. Based on previous 
research, Chunlei Zhang etc. continue to investigate end-to-
end text-independent speaker verifi cation by incorporating 
the variability from different utterance durations. They modify 
the previous network architecture which only can encode fi xed 
length features. The new netwok is referred to as Inception-
resnet-v1 with Spatial Pyramid Pooling [106]. Chao Li etc. 
researches from Baidu Inc present Deep Speaker, which is a 
nueral speaker embedding system that mapps utterances to a 
hypersphere where speaker similarity is measured by cosine 
similarity. The embeddings generated by Deep Speaker can 
be used for many tasks, including speaker identifi cation, 
verifi cation, and clustering [107]. Li Wan of Google proposed 
the Generalized End-to-End loss function to train speaker 
verifi cation models more effi ciently which makes the training 
of speaker verifi cation model more effi cient than triple loss-
based end-to-end loss function [108,109].

Conclusion and Future Research Trends 

This paper presen t s a systematic overview on various 
features extraction methods and back-end models for speaker 
recognition. In particular, we summarized the method of 
deep learning in speaker recognition. It also gave an overview 
of the latest end-to-end methods in speaker recognition. 
Through this reviews, we have observed that the performance 
signifi cantly depends on the features which represent the 
speaker specifi c characteristics and modelling technique, 
and also depends on the nature of the speech signal, speech 
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duration and phonetic environment. For SR system, the most 
important part is the front-end feature extraction. However, 
in all the studies presented above, there is no generalized 
universal feature extraction approach, and different speech 
durations have a great infl uence on the fi nal decision. Although 
deep learning has greatly improved the accurancy of speaker 
recognition, even though effective, deep learning system are 
highly data-driven and massive amounts of data are needed 
for training the background models. The data sets need to be 
labeled and organized in the requriments of actual model. If 
the development data conditions do not match to the expected 
operation environment, the training accuracy will drop 
signifi cantly. It is clear that we can not spend a lot of time 
on data tagging in actual research. Much of the recent process 
in speaker recognition largely rely on supervised learning, 
there has been very limited work on unsupervised speaker 
recognition approaches, which involve creating speaker models 
based on feature extracted from unlabeled data. The types of 
feature and feature extraction methods are great challenges in 
future research. 

In particular, we provided a review of end-to-end 
techniques for speaker recognition, which combined the front-
end and back-end. Compared with the traditional DNN-based 
i-vector approach, end-to-end model signifi cantly improve 
the speaker recognition system. But the model size of end-
to-end system is very large, and the requirements of CPU are 
also high. This will lead to end-to-end model sufferring from 
the time-consuming training process since a great mumber 
of hyperparameters and complicated structures are involved. 
Hence, the future work will focus on reducing model size, 
reducing CPU requirements and also look for ways of improving 
the long training time.
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