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Introduction

With advances in machine learning technology over the 
past decade, the use of deep neural networks has had great 
success in computer vision, speech recognition, robotics, and 
other applications. Along with these remarkable improvements 
in performance, the recognition of vulnerabilities has also 
increased. As applications of deep neural networks are 
increasingly being deployed, the security needs of these 
applications have come to the foreground, especially for 
safety-required applications (i.e., self-driving vehicles) and 
adversarial domains where attacks must be anticipated, such 
as defense applications.

A recent paper provides a comprehensive review of 
adversarial attacks and defenses [1] and provides a taxonomy 
for both the adversarial attacks and defenses. Pulling on the 
past literature, this review paper defi nes adversarial examples 
as “inputs to machine learning models that an attacker 
intentionally designed to cause the model to make mistakes”. 
Here, we present a new perspective on adversarial defenses 
that we believe can provide clarity and inspire novel defenses 
to adversarial attacks.

The taxonomy of adversarial defense in Xu, et al. [1] consists 
of three categories: gradient masking, robust optimization, 
and adversarial detection. Gradient masking includes input 
data preprocessing (i.e., jpeg compression [2]), thermometer 
encoding [3], adversarial logit pairing [4]), defensive 
distillation [5], randomization of the deep neural network 
models (i.e., randomly choosing a model from a set of models 
[6]) or using dropout [7,8]), and the use of generative models 
(i.e., PixelDefend [9] and Defense-GAN [10]). The theme 
of this diverse set of defenses is to make it more diffi cult to 
create adversarial examples and attacks but Athalye, et al. [11], 
demonstrate that gradient masking techniques are ineffective.

The second category in this taxonomy is called robust 
optimization, and it includes the popular defense method 
of adversarial training [12], regularization methods that 
minimize the effects of small perturbations of the input (i.e., 
Jacobian regularization [13]), and provable defenses (i.e., 
Reluplex algorithm [14]). Adversarial training is a form of 
data augmentation where adversarial examples are added to 
or replace the benign training data. Adversarial training is an 
important defense discussed in the literature, and variations 
have been proposed, such as ensemble adversarial training 
where the adversarial examples are computed from a set 
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of pretrained classifi ers [6]. Robust optimization includes 
methods for making deep neural networks behave more 
robustly to the presence of adversarial perturbations in the 
input, which is the primary focus of our taxonomy in Section 2.

The third category in this review paper is to detect the 
presence of adversarial examples in the input in order to 
protect trained classifi ers. That is, one can design a separate 
model to classify if a sample is benigned or adversarial. Carlini 
and Wagner [15], rigorously demonstrate that the properties of 
adversarial examples are not easy to detect.

For our purposes, we consider adversarial robustness to 
include all approaches for training networks to improve that 
network’s performance on adversarial examples. We focus 
primarily on category 2 of the above taxonomy but we also 
include many of the methods in their category 1. We propose 
this new taxonomy on adversarial robustness to provide 
insight to the underlying factors that enable training more 
robust networks.

In addition, there are several papers in the literature of 
adversarial attacks and defenses that claim there is a cost for 
robustness, such that greater robustness requires more data 
[16], larger model complexity [17] and longer training times. 
Furthermore, there are claims of trade-offs between robustness 
and accuracy [18,19], and even robustness and simplicity [20]. 
There appears to be widespread acceptance of these claims as 
universal. Another motivation of our work is to demonstrate 
that these claims are appropriate only for a subset of existing 
methods for training in adversarial robustness.

While there are other taxonomies mentioned in other 
papers, they offer only well-known factors for dividing 
approaches. Guo, et al. [2] divide the work in adversarial 
robustness into model-specifi c strategies (i.e., adversarial 
training [12], regularization methods [13]) and model-agnostic 
methods (i.e., input preprocessing [21]). Zhang, et al. divide 
adversarial defense into three categories of data preprocessing 
[2], gradient masking [11] , and adversarial training [12]. Here 
we reframe the category of making networks adversarially 
robust in order to provide a fresh perspective and inspire novel 
solutions in a way these other taxonomies do not.

Our taxonomy

There have been several recent papers showing that using 
metric learning loss functions during training helps in making 
neural networks more robust to adversarial examples [22-24]. 
Mustafa, et al. [23], used their own variation of the contrastive 
center-loss [25], that encourages both intra-class compactness 
and inter-class separation of the feature vectors or logits, 
which are the activations from the last hidden layer. The center 
loss [26], is a loss function that encourages the feature vectors 
for each class to lie close to each other (i.e., it encourages 
intraclass compactness) and the contrastive center-loss 
function is a generalization of it that also encourages interclass 
separation. We claim that these works imply a general factor 
for adversarial robustness, which can be stated as:

Category 1: Increasing intra-class compactness and inter-class 
separation of the feature vectors improves adversarial robustness.

There are several other papers that can be categorized 
under Category 1. Wu and Yu [27], postulate that the training 
of deep models decreases the average margin while increasing 
the minimum margin, and recommend increasing the average 
margin (i.e., the inter-class separation). Galloway, et al. [28], 
suggest that batch normalization is a cause of adversarial 
vulnerability. This aligns with Category 1 because batch 
normalization constrains the magnitude of the feature vectors 
(i.e., the activations in the next to the last layer, which is 
input to the fully connected and softmax layers). Hence, batch 
normalization limits interclass separation and therefore it can 
increase adversarial vulnerability.

It is particularly interesting to note that the defensive 
distillation approach [5], utilizes Category 1. Defensive 
distillation uses two networks and modifi es softmax by 
dividing by a temperature T, such that softmax(Z(,x)/T), 
where Z(,x) is the feature vector, x is the input sample, and  
are the network’s weights. In a rigorous paper by Carlini and 
Wagner [29], they describe the mechanism behind defensive 
distillation, they state “When we train a distilled network at 
temperature T and then test it at temperature 1, we effectively 
cause the inputs to the softmax to become larger by a factor 
of T.” Since the architecture used in defensive distillation 
does not contain batch normalization, the average magnitude 
for the feature vectors increases by T, thereby increasing the 
inter-class separation. Based on their analysis, we hypothesis 
that the teacher network (even without distillation) will also 
show signs of robustness and that adding batch normalization 
to the architecture or using a feature based attack [30], will 
break the effectiveness of defensive distillation.

Additionally, there are a number of papers in the literature 
focused on improving generalization (but not robustness) by 
increasing intra-class compactness and interclass separation 
of the feature vectors, such as centerloss [26], contrastive 
center-loss [25] and lifted structures [31], as well as papers 
that have appeared recently, such as G-Softmax [32] and 
Softmax dissection [33]. In our context, generalization refers 
to the ability of the network to classify images unseen during 
training and is measured by the gap between the training and 
testing loss. Category 1 implies that these methods will improve 
both generalization and robustness.

However, improving both generalization and robustness 
appears to contradict the conjecture of papers in the literature 
that suggest there is a trade-off between test accuracy and 
adversarial robustness [19,20]. This implies the existence of 
at least one other Category of adversarial robustness where 
this might be true. One possible set of defenses include image 
preprocessing [2,22] and gradient masking methods (see 
[34]). Image preprocessing approaches are based on reducing 
or eliminating “nonrobust” adversarial perturbations in the 
training images.

Adversarial perturbations were described as “nonrobust 
features” by Ilyas, et al. [35]. Ilyas, et al. postulate that 
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machines use all the image features that are discriminatory 
between classes (assuming the task is classifi cation), even those 
features that are invisible to humans. Adversarial training [36], 
specifi cally includes training images with non-robust features 
(i.e., adversarial examples) in order for the network to learn to 
classify examples with non-robust features properly.

We too believe as described in Ilyas, et al. [35], that humans 
and machines perform tasks differently. For example, humans 
are limited in the number of image features they use in making 
a decision while machines are much less limited. Adversarial 
examples exist where we expect human performance from 
a machine. To attain human performance from a machine, 
we can manually eliminate non-robust features from the 
training images via preprocessing or make all non-robust 
image features nondiscriminatory with approaches such as 
adversarial training.

If we consider the network’s training, we realize that as it 
learns, it averages away the non-discriminatory image features 
as “nuisance variables”. This is analogous to computing the 
marginal probability by summing or integrating the nuisance 
variables [34]. Hence, using a bit of inductive reasoning, we 
hypothesis a second Category for adversarial robustness:

Category 2: Marginalization or removal of non-robust image 
features improves adversarial robustness.

Many of the papers on adversarial robustness seem to lie 
within this Category 2, including adversarial training [33] and 
methods of gradients masking [11]. In addition, we show below 
with a toy example that there is a tradeoff between accuracy 
and adversarial robustness [19] for methods that fall under 
Category 2 (Note: while many of the papers on the trade-off 
between accuracy and robustness use the adversarial training 
defense, a similar argument holds for it).

The most obvious way to train a network at human per-
formance levels is to modify the training data to only contain 
the robust information we want it to use in classifi cation. One 
extreme way to eliminate non-robust image features is to 
preprocess the training and test images with an edge detection 
algorithm to produce binary edge images. These edge images 
commonly display shape information that humans are able to 
use to recognize objects. Training a network on edge images 
results in a highly robust network because all non-visible 
perturbations have been removed. However, the performance 
on benign images is reduced due to a decrease in discriminatory 
information between classes in the edge detection images 
relative to the original imagery. This example demonstrates 
the trade-off between accuracy and adversarial robustness. 
Of course, edge imagery leaves minimal discriminatory 
information and there is a range of preprocessing that falls 
on the spectrum between human and machine image features, 
such as low pass fi ltering (i.e., DFT [21]), denoising, sparse 
coding, synthetic imagery, and jpeg compression [2]. Note that 
it is possible to create examples that can fool even a network 
trained on edge examples by making large visible changes to 
the input, but the current defi nitions of adversarial examples 
include making small imperceptible changes.

To the best of our knowledge, most of the methods in 
the literature for attaining adversarial robustness fall under 
Category 2. The goal of these methods is to marginalize the 
non-robust features. This explains why training on more data 
improves the adversarial robustness of deep networks (i.e., 
increases the likelihood of non-robust features appearing in 
different classes to be marginalized away as nuisance variables) 
[37]. This also explains the added adversarial robustness from 
Jacobian regularization [13], where the loss function trains 
the network to be invariant to small, non-robust features. It 
also suggests new methods to obtain adversarial robustness, 
such as a variant of adversarial training where one adds the 
same perturbation to images of different classes to make that 
perturbation non-discriminatory.

Discussion

While we believe that we have presented a few novel 
connections and insights that we have not seen in the literature, 
we must still ask if this taxonomy is useful and if so, how.

First, this taxonomy suggests that both robustness and 
generalization can be improved simultaneously. It clarifi es that 
papers declaring there is a trade-off between robustness and 
accuracy are misleading because the tradeoff is not universal. 
We suggest the deep learning community take up the challenge 
to discover ways to improve both robustness and generalization 
rather than pursue the current focus of improving robustness 
at the expense of accuracy. Techniques based on metric 
learning appear to offer performance improvements in both, 
and other methods may also exist. Of course, the other side 
of this challenge is to create new attacks that defeat any new 
defenses that improve both generalization and robustness.

Second, our paper proposes eliminating non-robust 
features from the training data so that trained networks learn 
to only rely on robust image features. But we don’t delineate an 
optimal way to process images to contain only robust features. 
Obviously binary edge detection images are too extreme as 
they also eliminate many robust image features. On the other 
hand, after low pass fi ltering (i.e., image blurring) non-robust 
features still remain. The challenge still remains to discover an 
ideal preprocessing method or combination of methods.

Third, new network training methods can be inspired 
by our analogy of training to marginalization. For example, 
data preprocessing and augmentation can insure that non-
robust image features are explicitly present in multiple or 
all classes to insure that the network treats them as non-
discriminatory. Similarly, marginalization implies that the 
training methodology in few-shot meta-learning of changing 
the tasks every iteration creates more universal features that 
will be benefi cial in transfer learning and perhaps in other 
scenarios. In addition, the community can investigate better 
training data combinations that optimally marginalize non-
robust features. There is much additional work to be done in 
this direction to better understand the theoretical and practical 
aspects of marginalization.

Fourth, the separation of methods for making networks 
more robust into two Categories implies that methods from 
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each Category can be productively combined. The combination 
of methods from each Category should provide different 
strengths to a network or an ensemble of networks. Combine 
these with the best methods for each of the categories (see Xu, 
et al. [38]) and one has an ensemble with the potential to make a 
solid defense. Unfortunately, the paper with a title “Ensembles 
of weak defenses are not strong” [38], is misleading because 
in that paper the authors only tested ensembles of defenses 
that all fall into a single category, such as detectors or our 
Category 2 above. He, et al. [38], mention that their “adaptive 
adversarial examples transfer across several defenses” which 
might “explain why ensembling is not an effective approach”. 
It is obvious that each defense in an ensemble must provide 
strengths that are orthogonal to all the other defenses and an 
ensemble of many near identical defenses is not useful.

For example, a potential ensemble might include the 
best adversarial example detector (e.g., Carlini and Wagner 
[16], found the Bayesian uncertainty estimate of Feinman, et 
al. [8], to be the strongest of those they tested), as well as a 
network trained by ensemble adversarial training [6], plus a 
dropout network that hides the gradient (i.e., Athalye, et al. 
compare several methods for hiding gradients and found that 
randomization [7], to be most effective), and networks each 
from the two Categories in our taxonomy (i.e., one trained with 
metric learning and another trained on edge detection images, 
which will force image perturbations to be visible or else they 
will be eliminated during preprocessing).

We conjecture that a diverse ensemble, with each member 
offering orthogonal strengths, will be a strictly more powerful 
defense than any one defense. In this treatise we have stated 
that each ensemble member described above must posses 
orthogonal strengths, which might not prove true in practice. 
However, ablation studies of an ensemble’s members can 
determine if each member adds to the security of the system. A 
rigorous analysis of an ensemble’s strengths will also identify 
its remaining weaknesses and further defense efforts can focus 
on eliminating these weaknesses.

In addition, we hypothesis in this paper that several of 
the new methods based on metric learning for improving 
generalization in the literature [32,33], will also improve 
robustness. If this is confi rmed, there will be numerous 
other methods in the literature i.e., [25,26], that will improve 
robustness but have not been demonstrated yet [39].

Conclusions

In this paper we expand the area of adversarial robustness 
into a taxonomy with two categories; Category 1: increasing 
intra-class compactness and inter-class separation of the 
feature vectors improves adversarial robustness, and Category 
2: marginalization or removal of nonrobust image features 
also improves adversarial robustness. This taxonomy permits 
an understanding of the underlying factors that drive the 
adversarial robustness of the known methods, and this 
understanding allows exploring new methods with the same 
underlying factors.

In addition, we attempt to dispel several potential 
misunderstandings and set forth several challenges to the deep 
learning community, such as the discovery of new methods that 
improve both robustness and generalization. There are also a 
number of research items left as future work, such as optimal 
ways to eliminate non-robust features from the training data 
via preprocessing or to optimally marginalize non-robust 
features via training.

We also propose that a diverse ensemble of defenses, with 
each member offering orthogonal strengths, will be a strictly 
more powerful approach than any one defense. An ensemble of 
defenses should include all the strongest defenses and should 
be tested against all of the strongest attacks, in order to fi nd the 
remaining weaknesses. Then further research on robustness 
can concentrate on only the remaining holes in the defenses.

We also call on researchers to go further with adversarial 
defense than is typically done today in the literature. In 
addition to the challenge of improving both robustness and 
generalization, researchers can attempt to simultaneously 
solve multiple other limitations of deep learning, such as 
reducing the amount of labeled training data needed and 
creating adaptable networks that learn continuously.

Futhermore, adversarial defenses must go further than 
working on small imagery such as MNIST and Cifar, which are 
the most common benchmarks in the adversarial examples 
literature. The community seems ready to venture into higher 
resolution imagery of ImageNet and real world imagery, such 
as satellite imagery.

Eventually, the research and engineering communities 
will need to investigate adversarial attacks and defenses in 
the context of safety-required applications (i.e., selfdriving 
vehicles) and adversarial domains where attacks must be 
anticipated, such as defense applications. It is only in the 
context of these applications where complete and secure 
solutions can be discovered.
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