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Different types of energy sources (e.g., batteries, 
supercapacitors, fuel cells) can be utilized in electric vehicles 
to store and provide energy in the e-powertrain through 
power electronic devices [1-6]. The lifetime of the components 
in the e-powertrain depends on their load profi le [7,8]. For 
instance, the lifetime of a battery highly depends on the depth 
of discharge and the number of charge/discharge cycles [9-13]. 
The lifetime of an inverter mostly depends on the variations in 
the active-reactive power passing through it. This means that 
the expended life cost of the components can be decreased by 
allocating an optimal share of the total power to each energy 
source and power electronic device at an optimal time instance. 
In addition, the driving range of a vehicle can be prolonged 
by decreasing the energy loss i.e., operating the components 
in their high-effi ciency region. Therefore, it is necessary to 
perform Optimal Power Flow (OPF) in the operation of the 
e-powertrain. The OPF aims to minimize the expended life 
cost of the components and maximize the driving range of the 
vehicle by optimizing the following decision variables while 
satisfying technical constraints:

• The charge/discharge power of battery storage and 
supercapacitor systems ‘at each time instance’ 

• The charge power of fuel cell systems at each time 
instance 

• The load share of each DC/DC converter 

• The bidirectional active and reactive power profi les of 
each DC/AC inverter 

• The length of charge and discharge periods of batteries 
and supercapacitors 

• The number of charge-discharge cycles of each storage 
unit in each prediction horizon

• The status of charge/discharge of batteries and 
supercapacitors

• The depth of discharge for storage systems at each time 
instance

This leads to a large-scale (with hundreds of variables), 
non-convex, stochastic (due to uncertain parameters), dynamic 
(due to storage components), multi-timescale, and mixed-
integer nonlinear programming (MINLP) problem. Thus, the 
computation time to solve the problem can be much higher 
than required for ‘real-time’ application [14,15]. In addition, 
the feasibility of the real-time solutions should be also ensured 
for the safe operation of the vehicle [16]. For this reason, 
MicroFuzzy GmbH, in collaboration with the Technische 
Universität Ilmenau, develops a multi-time-horizon 
framework to solve this challenging optimization problem in 
real-time (Figure 1). The computation time is decreased using 
parallel computing to achieve the online OPF. The solutions 
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also safeguard both feasibility and optimality of the operations 
in real-time, while minimizing the total operation costs. 
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Figure 1: Offl  ine optimal power fl ow (gray) and online optimal power fl ow (black).


