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There has been a huge trend to integrate Renewable 
Energies (REs) and Electric Vehicles (EVs) into energy 
networks (Figure 1). This is mostly due to the shrinking price 
of their application and the increasingly strict emission policy. 
However, the integration of REs and EVs brings new challenges 
to the network operation [1]. For instance, a considerable 
amount of REs cannot be accommodated in the network and 
thus has to be curtailed due to technical limitations [2-5]. For 
overcoming this problem, Battery Storage Systems (BSSs) can 
be used to store the surplus energy and consequently increase 
economic benefi ts [4]. In addition, the storage capacity of EVs 
can be employed to store an amount of REs and provide it back 
to the grid when needed [6]. This not only balances the supply 
and demand but also results in decrease in network losses and 

improvement of voltage and frequency stability of the grid. 
However, BSSs and EVs lead to a dynamic power fl ow for the 
grid, which is diffi cult to address. In addition, considering 
both active and reactive power capability of the EVs and BSSs 
with fl exible operation strategies, as well as maximizing the 
lifetime of the batteries [7,8] further increase the complexity of 
the problem. Another signifi cant challenge lies in the fact that 
REs and EVs are intermittent and uncertain, i.e., their power 
exchange with the grid cannot be accurately forecasted and 
thus causes discrepancies between the forecasted and realized 
values. The uncertainties can lead to constraint violations and 
thus safety problems if not handled properly [9,10]. Therefore, 
the network operator has to fast update the operation strategies 
correspondingly, in order to operate the network economically 
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Figure 1: A smart grid with BSSs, EVs, and renewable energy generations. 
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and safely, i.e., online optimal operation strategies for the 
whole system are needed [11-16]. Mathematically, it is a task 
to solve a real-time dynamic active-reactive optimal power 
fl ow (RT-DAR-OPF) problem with a huge number of mixed-
integer decision variables [16]. The optimization problem aims 
at minimizing the total grid operation costs and expended life 
costs of BSSs, while maximizing the benefi ts for RE and EV 
owners. Therefore, developing a solution framework for RT-
DAR-OPF is of utmost importance for ensuring both optimality 
and feasibility in the operation of smart grids with BSSs 
under uncertain EV and RE exchange. The most challenging 
issue hereby is that a large-scale dynamic stochastic mixed-
integer nonlinear programming (MINLP) problem has to be 
solved in real-time [16]. A multi-phase multi-time-scale 
solution framework provides a way to solve this complicated 
optimization problem. As a result, the operation strategies by 
the online optimization will fi nancially motivate the network 
operator and energy prosumers to interact optimally in the 
grid, while satisfying all technical constraints.
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