
082

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Introduction

At fast, the technical terms that are used in this paper are
explained. The accident means an event that causes the loss of
the target system, and the loss means a negative effect on the
users, environments, missions, and target system. The hazard
means the system’s state that negatively affects the target
system when some bad conditions are satisfi ed.

Recently, industrial products, such as cars, medical
apparatuses, and aerospace apparatuses, are developed as the
systems that are combined the hardware and software, and
their confi guration of the apparatuses and controls become
complex. As a result, unintended accidents occur when using the
industrial products. Those accidents occur when hazards that
are occurred by interactions between hardware and software
when using an apparatus and some negative conditions that
cause the accident are satisfi ed. This accident model is called
as Systems-Theoretic Accident Model and Process (STAMP)
model. Additionally, based on the STAMP model, the safety
analysis method that clarifi es hazards and hazard scenarios is
called STAMP based Process Analysis (STPA) [1].

This paper proposes a method that clarifi es the hazards
and proposes safety countermeasures after completing the
development of the functional specifi cations for Embedded
Control Software (ECSW). In the proposed method, STPA is
conducted by inputting the ECSW system specifi cations that
are consisted use-case diagrams and class diagrams that are
written in Unifi ed Modeling Language (UML). As a result of
conducting STPA, hazards are clarifi ed, and hazard scenarios
are developed. Sequence diagrams corresponding to the
hazard-scenarios are developed and the Hazard Causal Factors
(HCFs) are clarifi ed. In this case, the reasons of the HCFs are
the execution of methods and/or the non-execution of methods
in the class. Based on the STAMP model, the safety analysis
method that clarifi es the hazards and the hazard scenarios is
called a System-Theoretic Process Analysis (STPA).

The organization of this paper is explained below. Section 2
describes the related works. Section 3 describes the outline of
the proposed method. Section 4 describes the applications and
evaluations of the proposed method. And section 5 describes
future works.

Abstract

This paper proposes an analysis method for hazards that are occurred by interactions between hardware and software when using an apparatus installed an
Embedded Control Software (EBSW). Hazard means a state that negatively affects the apparatus when some bad conditions are satisfi ed. Especially, the purpose
of the method is clarifying the EBSW portions that cause the hazards. The outline of the proposed method is as follows; (1)Develop EBSW specifi cations written in
Unifi ed Modeling Language (UML) and accident information, (2) Conduct safety analysis (System-theoretic Process Analysis: STPA) by inputting EBSW specifi cations and
accident information, and generate the list of hazards and hazard scenarios, (3) Develop sequence diagrams corresponding to the hazard scenarios, and clarify program
portions (Hazard Causal Factor: HCF) that are causes of the hazards, and (4) Conduct Failure Mode and Effects Analysis (FMEA), and apply countermeasures to avoid
occurrences of the hazards. As a result of applying this method to the sample EBSW, we can confi rm that the safety EBSW is developed.

Research Article

A Hazard Analysis Method for
Embedded Control Software
with STPA
Masakazu Takahashi1*, Yunarso Anang2 and Yoshimich

Watanabe3
1Department of Computer Science and Engineering, University of Yamanashi, Japan

2Department of Computational Statistics, Politeknik Statistika STIS, Indonesia

3Department of Computer Science and Engineering, University of Yamanashi, Japan

Received: 09 November, 2020
Accepted: 19 November, 2020
Published: 23 November, 2020

*Corresponding author: Masakazu Takahashi, Depart-
ment of Computer Science and Engineering, University
of Yamanashi, Japan, Tel: +81-55-220-8585; Fax: +81-
55-2208776; E-mail:

ORCID: https://orcid.org/0000-0003-1778-9119

https://www.peertechz.com

083

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

Related works

This section describes the previous studies and STAMP/
STPA.

Previous studies: The previous studies classify into the
development of standards for safety ECSW in the various
industrial products and the safety analysis methods.

At fi rst, the standards to develop safety ECSW in the
various industrial products were explained. The accidents
for the industrial products that required the safety in high
level gave the negative impacts to the human’s lives and
the environments. The regulatory authorities required the
observance of the development processes corresponding to
the development standard to the manufacturers. Additionally,
the regulatory authorities required enough safety analysis for
the industrial products. As for such development processes,
for examples, JIS T2304 [2], IEC62394 [3], IEC82304-1 [4] in
the medical device domain were established, Good Automated
Manufacturing Practice [5] in the pharmaceutical production
system domain was established, ISO26262 [6] was established
in the automobile domain, and DO-178C [7] and JAXA JMR-
001 [8] were established in the aerospace domain. As those
standards did not describe the detail of the concrete safety
analysis procedures, it often occurred that the additional tasks
were required because of the misunderstanding of the standard.

At second, the various safety analysis methods were
explained. Takahashi et al. proposed a method that clarifi ed
all accidents that might occur and decide the countermeasures
to solve them using the Failure Mode and Effects Analysis
(FMEA) [9]. Weber et al. proposed a fault detection method
for the avionics software written in assembler using the Fault
Tree Analysis (FTA) [10]. Leveson et al. showed that the Fault
Tree (FT) could be developed by preparing the FT templates
corresponding to the essential instructions of the ECSW and
combining those FT templates [11,12]. Takahashim, et al.
proposed the development rules that developed FT automatically
by tracing the process that caused the accident and combining
the FT templates [13]. Pai et al. proposed the method that
calculated the reliability of the system by inputting the design
specifi cations written in the UML [14]. Though those methods
were to clarify the cause of the failure of the component level
of the industrial product, the complex failures that arose from
the interactions between the components could not be dealt
with. For this problem, Leveson et al. proposed the method that
could be dealt with the complex failures (accidents) that arose
from the interactions between the components. The details of
this method were explained in the next section.

Outlines of STAP and STPA

This section describes the STAMP model and STPA [1].

Figure 1 shows the STAMP model. The STAMP model
describes that the system consists of the controller, process
model, and controlled process. The process model shows the
state of the controlled process that the controller supposes. The
controller sends Control Actions (CAs) to the controlled process
based on the state of the process model, and the controller

changes the state of the process model based on the sent CAs.
The controlled process transits the inner state based on the
received CA, and the controlled process returns the result as
the Feedback Data (FBD) to the controller. In the case that the
state of the process model matches the state of the controlled
process, the system is in the safe state. In the case that the case
that the state of the process model does not match the state of
the controlled process, the system is in the unsafe state. At that
time, hazards occur.

The procedure of STPA is explained as follows. At fi rst,
the accidents and hazards of the target system are defi ned.
Additionally, the Safety Constraints (SAs) are defi ned. At
second, the Control Structure Diagrams (CSDs) are developed.
Figure 2 shows an example of the CSD. The CSD defi nes the
components (subsystems and apparatuses) that are necessary
to realize the SCs and the interactions (CA and FBD) between
components. At third, Unsafe CAs (UCAs) are defi ned. The
CAs that is necessary to conduct SCs in the CSD are identifi ed.
UCAs are derived by applying “the 4 keywords to identify the
UCAs that cause the hazards (such as not providing, providing,
too fast/too late, inappropriate execution sequence, too fast/
too long)” to the identifi ed CAs. At fourth, the conditions that
every UCA causes hazard are clarifi ed. The controllers and the
controlled processes related to the each UCA are extracted from
the CSD, and the control loop related to the UCA is clarifi ed.
UCA in the control loop is applied to the guide word one by
one, and it is considered whether the UCA applied the guide
word causes the hazard. Figure 3 shows the 11 guide words that
cause the HCF in the control loop. In the case that the hazard
occurs, the conditions that cause the hazard are clarifi ed. Those
conditions are HCFs. Additionally, the scenarios that include
the processes from the occurrence of the HCF to the hazard
are developed. At last, the countermeasures that do not cause
hazard are developed by considering the hazard scenario.

Outline of the proposed method

This section describes the outline of the proposed method.

Controller

Process Model

Controlled Process

Control
Action (CA)

Feedback
Data (FBD)

Figure 1: Concept of the STPA model ([14], P.1, fi g.1.1-1).

Component C

Component A

Component BControl
Action 1

Feedback
Data1
(FBD1) Control

Action2

Control
Action 3

Feedback
Data2 (FBD2)

Figure 2: An example of control structure diagram ([14], P.2, Fig.1.1-2).

084

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

The subsection A describes the whole outline, and the subsection
B describes each task that consists the proposed method.

Outline of the proposed Method

Figure 4 shows the outline of the proposed method. The
proposed method can be applied after the completion of the
requirement defi nition and the functional design (completion
of the development of the use-case diagrams and the class
diagrams). The proposed method consists of the four tasks.
At fi rst, “development of the UML system specifi cation” task
describes the information related to the system’s element,
confi guration, and control. At second, “development of the
hazard scenario using STPA” task decides the accidents,
hazards, SCs, and hazard scenarios related to the target
system. At third, “development of the sequence diagrams
corresponding to the hazard scenario and the assignment of
the HCF to the classes” task develops the sequence diagrams
corresponding to the hazard scenario based on the information
of the use-case diagrams and the class diagrams of the ECSW.
As a result, the portions that are the causes of the hazards
(HCF) are clarifi ed. At last, “conduction of the FMEA for each
HCF” task conducts FMEA to each HCF, evaluates the negative
impacts of the accident, and conducts the countermeasures that
do not occur the HCF (not to occur the hazards), if necessary.

Tasks that consist of the proposed method

Development of the UML system specifi cations:
“Development of the UML system specifi cations” task
develops the use-case diagrams and the class diagrams for
the target system. Here in after, those diagrams are called
the UML system specifi cations. Use-case diagrams describe

the target ECSW and the apparatuses (hardware) that have
the interactions between the ECSW. The apparatuses are used
when developing the sequence diagrams in “development of
the sequence diagrams corresponding to the hazard scenario
and assignment of the HCF to the classes “. The class diagrams
describe the classes and the methods in ECSW. Those are used
when developing the sequence diagram similarly.

Development of the hazard scenario: “Development of the
hazard scenario using STPA” task decides the HCFs considering
the UML system specifi cations, accidents, hazards, and HCs
and develop the hazard scenarios.

At fi rst, the target accident is decided considering the usage
of the target system. The hazard that causes the accident and
the conditions that the hazard causes the accident are decided.
Then the SCs are defi ned based on the conditions that hazard
causes the accident.

At second, the CSD is developed from the use-case diagrams
and the class diagrams in the UML system specifi cations. The
components in the CSD are the actors in the use-case diagrams
and the classes in the class diagrams. The CAs between the
components shows the method invocation between the classes
that have the relations, and the direction of the CA corresponds
to the direction of the inductivity. The data between
components shows the return value of the invocated method.
Figure 5 shown the correspondence between the UML system
specifi cations and CSD.

At third, UCAs are derived from all combinations of CAs in
the CSD and “the 4 keywords to identify the UCAs that cause
the hazards”. Table 1 shows the diagnostic table that is used

(2) Inadequate
Control Algorithm
(Flaws in creation,
process changes,

incorrect modification
or adaptation)

(3) Process
model

Inconsistent,
incomplete, or

incorrect
(3) Inadequate

operation

(4) Component
failures,

Changes over time

(4) Inadequate
operation

(1) Control input or
external information

wrong or missing

(8) Inappropriate,
ineffective or missing

control action

(7) Delayed
operation

Conflicting control
actions

(9) Process input
missing or wrong (10) Unidentified or

out-of-range
disturbance

(11) Process output
contributes to
system hazard

(5) Inadequate or
missing feedback

(6) Incorrect or no
information provided,

Measurement
inaccuracies,

Feedback delays

Controller

Actuator

Controlled Process
Controller 2

Sensor

Process Model
Control Algorithm

Figure 3: “11 guide words” that cause the HCF in the control loop ([14], P.9, Fig.2.5-1).

085

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

UML system speci ca ons

Target
system

Development
of the UML

system
speci ca ons

Development of the
Sequence Diagrams

corresponding to the
hazard scenarios and

assignment of the
HCFs to the classes

HCF list
for each
class of

the EBSW

Hazard
scenarios

Counter-
measures

that do
not occur

HCFs

data

task

Development
of the hazard

scenarios
using STPA

Condu on
of the

FMEA for
each HCF

Development of the
Sequence Diagrams

corresponding to the
hazard scenarios

Use -Case Diagram

A c tor

D o AB C

A B C s ys tem

A B C
C ontrol

S ubclass B S ubclass C

C lass A D e vice

Class Diagram

A c tor
：A B C
c ontrol

：D evice ：s ubclass
B

：s ubclass
C

SBmethod1()

ABCmethod1()

SCmethod1()

Dmethod2

Dmethod1()

Sequence Diagram

Figure 4: Outline of the proposed method.

Railroad
crossing
control

Start-
warning
sensor

Stop-
warning
sensor

Sensor A Railroad
crossing

Use-Case DIagram
Class Diagram

Train

Control bar
of railroad

crossing

Railroad control
system

Railroad
crossing
Control

Railroad
crossing

Sensor A :
start-

warning
sensor

Sensor B:
start-

warning
sensor

Sensor C:
stop-

warning
sensor

CA
closeRailroadCrossing
cpenRailroadCrossing
startWarning
stopWarning

CA
startMask
stopMask
existTrain
existNoTrain

Actor

CA
passing correspondenceControl Structure

Diagram

Figure 5: Correspondences between UML system specifi cations and CSD.

086

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

The messages sent and received between the lifelines are the
method of the class in the ECSW. The direction of the messages
corresponds to the direction of the inductivity in the class
diagrams. As a result of sending and receiving the messages
according to the developed sequence diagrams, the hazard
occurs. Therefore, the execution and/or non-execution of the
method according to the sequence diagram are considered as
the HCFs, and those HCFs are assigned to the methods in the
class that receives the message. As assigning HCFs into methods
in the classes for all hazard scenarios, the HCFs (methods) in
each class are clarifi ed. Figure 6 shows an example of assigning
HCFs into the classes.

Conduction of the FMEA for each HCF

“Conduction of the FMEA for each HCF” task conducts
functional level FMEA to the HCFs that are assigned to the
methods of each class and evaluates the negative impact
to the ECSW when HCF occurs. In the case that the negative
impact is big, the causes of the HCFs are clarifi ed and the
countermeasures that reduce the negative impact are planned
and conducted.

The function level FMEA for the ECSW is explained [9]. The
failure modes of the ECSW are that the methods of the ECSW
do not perform the original functionalities. Because the ECSW
is software, there is no case that the ECSW does not perform
the functionalities by aging (deviation of the function). The
reasons why the ECSW does not perform the functionalities
are the case that the function is used incorrectly (deviation of

Table 1: Diagnostic table that is used for identifying UCAs ([14], P8, Table 2.4-1
modifi ed).

ɸ
Control
action

Not
providing

causes
hazard

Providing
causes
hazard

Too Early/too late
wrong order causes

hazard

Stopping too soon/
applysing too long

causes hazard

1
Control
action

(Condition) (Condition) (Condition) (Condition)

ɸ …... ….. ….. ….. …..

[Hazard Scenario]
Train pass the railroad crossing without
warning.

Scenario 1
Warning dir on From Railroad crossing
control to railroad crossing does not reach.
Scenario 2
Message does not reach railroad crossing
control because of the failure of start-
warning sensor. ：

：
Hazard Scenario

Closing and start warning
method in the railroad
crossing does not work

Closing and start
warning method can

not be executed.

Closing and start
warning method can

not be invocated.

T rain

：R ailroad
C ross ing

c ontrol

：R ailroad
c ross ing

：s tart-
wa rning
s e nsor

：s top-
wa rning
s e nsor

pass()

existTrain ()

pass()

existNoTrain ()

Closing & start warning()

Sequence Diagram

R a ilroad
C ross ing
C ontrol

S ta rt-
wa rning
s e nsor

S top-
wa rning
s e nsor

S e nsor
R a ilroad
c ross ing

Class Diagram

Figure 6: Example of assigning HCFs into the classes.

for identifying UCAs. The SCs that confl ict with the UCA are
written in the cells of the table.

At fourth, the control loop that causes the hazards with
the UCA and CSD is identifi ed, 11 guide words that have the
possibility to become HCF are applied to UCA in the control
loop, and the combination of the UCA and the guide word
are evaluated whether it would be a hazard. In the case that
it becomes the hazard, the conditions (HCFs) are investigated
and clarifi ed. Furthermore, the process leading to the hazard is
defi ned as the hazard scenario.

Development of the sequence diagrams corresponding
to the hazard scenario and the assignment of the HCF
to the classes

“Development of the sequence diagrams corresponding to
the hazard scenario and assignment of the HCF to the classes”
task develops the sequence diagrams corresponding to the
hazard scenario. The lifelines in the sequence diagrams are the
actors in the use-case diagrams and the classes in the ECSW.

087

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

the execution conditions) and/or that the data outside of the
range are inputted (deviation of the use conditions). Those are
considered as the failure modes of the ECSW. So, the standard
failure modes and standard safety countermeasures are decided
by analyzing the FMEA results for the existing systems. Table
2 shows the list of the standard failure modes and standard
safety countermeasures.

FMEA procedure for the ECSW is as follows. The method
that is HCF in the class is investigated whether each standard
failure mode can be applied. In the case that applicable standard
failure modes exist, the standard safety countermeasures
corresponding to the standard failure mode are selected, and
the countermeasures are applied to the methods. Finally, the
severity, the incidence, and the discovery rate of the method
are decided. In the case that the degree of risk priority
can be acceptable, selection and application of the safety
countermeasures are fi nished. The risk evaluation matrix
shown in Figure 7 is used to decide the risk priority.

Application and evaluation of the proposed method

The safety analysis for the railroad crossing control system
is conducted to evaluate the proposed method. The subsection A
describes the outline of the application case, and the subsection
B describes the application results and the evaluation.

Outline of the application

The safety analysis for the railroad crossing control system

is conducted. The railroad crossing control system is as same
as the system that the Information-technology Promotion
Agency (IPA) uses as an analytical example for conducting
STPA [15]. Because the IPA example does not describe the
ECSW that controls opening/closing the railroad crossing and
rumbling/stopping the alarm device, the authors assume the
confi guration of the ECSW. Figure 8 shows the outline of the
railroad crossing. The railroad crossing consists of the control
apparatus, the railroad crossing & the alarm device, and the
sensors (two alarm start sensors, such as A and B, and one
alarm stop sensor, such as C. Those sensors cannot detect
the direction of the train.). The requirements for the railroad
crossing control system are as follows.

• When the ECSW detects the train using the alarm start
sensors A or B, the ECSW starts alarm after a certain
period of time.

• When the ECSW detects the train using alarm stop
sensor C, the ECSW stops the alarm after a certain
period of time.

• When the train moves from A to C, the alarm start
sensor B is masked (not to detect the train).

• When the train moves from B to C, the alarm start
sensor A is masked (not to detect the train).

Figure 9 shows the outline of the railroad crossing control

Low Middle High

High

Middle

Low

Incidence

High Middle Low

1

2

3

Discovery rate

yti
re

ve
S R
isk C

lass

Risk class 3

Risk class 1

Risk class 2

Risk priority “High”

Risk priority “Middle”

Risk priority “Low”

Figure 7: Risk evaluation matrix ([5], P.121, Fig.M3.5).

Railroad
crossing

& warning
device

Stop alarm
sensor C

Start alarm
sensor A

Start alarm
senor B

Line

Direction
of travel

Control
apparatus

Station Station

Figure 8: Outline of the railroad crossing ([14], P.11, Fig3.3-1(modifi ed)).

088

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

Table 2: Standard failure modes and safety countermeasures.
Group Standard Failure Mode Failure Example Countemeasure Policy Standard Safety Countemeasures

Start up
The startup conditiond for
functions are not prepared

Related operations cannot
be conducted, an improper

system status exists

Review the startup conditions Add the confi rmation procedure for the startup
conditions to the SOP, set the conditiona as to Conduct multiple checks when startup

Conduct the startup check Display the startup status

Termination
The termination conditions for

functions are not prepared

Related operations cannot
be conducted, an improper

system status exists

Review the termination conditions for
functions Add the confi rmation procedure for termination

conditions to the SOP, set the conditions whether
or not to terminateConduct multiple checks upon

termination

Conduct termination check Display the termination status
Transit to the safe status for top priority Add the emergency stop function

Input/Output

Instructions on SOP misread

Improper products
are manufactured, an

improper system status
exists

Conduct multiple checks on SOP Conduct double checks on SOP

Improve the visibility of SOP indications Integrate the SOP format

Indications on HMI misread

Improper products
are manufactured, an

improper system status
exists

Conduct multiple checks upon HMI Conduct double checks on HMI
Improve the visibility of HMI Integrate the HMI format

Check the content of HMI Add the reconfi rmation function

Mistake in checking products
Improper products are

manufactured
Conduct multiple checks on products Conduct double checks on products

Past data is lost
Data related to quality

is lost
Notify when data is lost Add the Warning function for past data loss

Latest data is lost
Data related to quality

is lost
Notify if there is a data loss risk Add the Warning function of the latest data loss

An inputting error
Improper consignments

are manufactured, an
improper

Multiple checks on input data Conduct double checks on setting data

Caliboration
Long time intervals for fucntion

calibration

A wrong measurement is
done improper prodcuts

are
Conduct periodic reviews Shorten time intervals for functioncalibration

Qualifi cation Wrong operation authority

Proper opertaions
cannot be done,

improper products are
manufactured

Confi rm the qualifi cation before operation Confi rm operation authority before operation

Do not set improper authority Review authority periodically

Backup
Memory device problem

Data disappears, data
realted to quality is lost

Multiplex data save Multiplex memory devices
Shorten backup intervals Conduct backup operations periodically

Insuffi cient backup
Data disappears, data

realted to quality is lost
Conduct proper backup operations Organize the backup procedure in the SOP

Shorten backup intervals Shorten backup time intervals

Program

Unexpected amount of data is
acepted

Data can not be updated Reliize faster processing Reliize faster updatingprocessing
Data can not be updated Develop faster devices Install faster memory devices

The upper limit of calculation
precision is confi rmed

Improper products are
manufactured

Increased signifi cant digits
Utilize double-precision variables

The lower limit of calculation
precision is confi rmed

Improper products are
manufactured

Increased signifi cant digits

Divided by zero Operation is suspended Give a warming Division of zero Add the warning function for a small divisor
Unexpected amount of data is

accepted
Abnormal program

shutdown
Refuse data Add the restriction function for available data

Do not input data Add the number of available data to the SOP

Unexpected interruption tasks
occur

Abnormal program
shutdown

Restrict interruption tasks Restrict interruption tasks

Prohibit interruption tasks
Add the restriction function for interruption tasks

to the SOP

Unexpected CPU load occurs
Program does not

reponse, a slow respons

Unexpected execution requests are not
sent

Add the function of displayiong CPU usage

Refuse unexpected execution requests
Add the restriction function for accepting execution

requests under CPU overload

Malicious
operations or

attacks

No identifation for important
data Data is removed

Take measures so that data is not
removed

Introduce DLP tools

No access control data Add access control for data according to each user
Data could be written Data is falsifi ed Take measures so that data is not Add e-signature, add time stamp

Vast amounts of data sent Related operations cannot
be conducted

Data acceptance is blocked Disconnect from the external network
Vast amounts of requests sent Data is selected Install fi re walls

Illegally accessed from the
outside

System is invaded
Disconnect Discount from the external network

Discover illegal access
Introduce IDS
Introduce IPS

Data with virus attached is
received

System malfunctions,
improper products are

manufactured

Remove computer virus Intorduce antivirus software
Take measures so that virus does not

invade
Introduce virus protection software

Conduct virus check USB memory devices

089

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

system that the authors assume. The use-case diagram shows
that the train actor and the sensor actors use the control
railroad crossing. The class diagram shows that the railroad
crossing control system consists of the railroad crossing
control class, the sensor class, and the railroad crossing &
alarm device. Additionally, the sensor class has two subclasses,
such as the alarm start sensor and the alarm stop sensor. The
railroad crossing control class decides the CAs that are sent to
the railroad crossing & alarm device based on the FBD from
the sensors. The sensor classes send the FBD when the sensor
classes detect the train. The railroad crossing & alarm device
class controls the railroad crossing and alarm device when the
railroad crossing & alarm device classes receive the CA.

The outline of the case studies is explained as follows

Case 1: The train crashes the pedestrian or the car (accident
1: A1), the railroad crossing does not close when the train exists
on the railroad (hazard: H1).

The train from A passes the alarm start sensor A, passes the
alarm stop sensor C, and stops. Then the train is detached into
two parts, such as the front part and the rear part. The front
part goes to B, and the rear part returns to A.

Case 2: Accident and hazard is as same as Case 1.

The train from A passes the alarm start sensor A, but the
execution of the closeBar&start alarm method is delayed for
some reason. After the train passes the alarm stop sensor C, the
execution of the closeBar&startAlarm method starts tardily.

Case 3: Accident and hazard is as same as Case 1.

The fi rst train from A passes the start alarm sensor A and
passes the stop alarm sensor C. Then the start alarm sensor
A and B are masked. The second train passes the start alarm
sensor A immediately after the fi rst train passes the stop alarm
sensor.

Application and evaluation of the proposed method

The results of the evaluation are described below.

Case 1

At fi rst, the UML system specifi cations that are shown in
Figure 9 are developed. STPA is conducted by inputting the
UML system specifi cation. The following task number two to
fi ve are the same procedure in section 3.B.2).

At second, the accidents, hazards, SCs are identifi ed. In this
case, it is considered that the accident is “the train crashes the
pedestrian or the car “, the hazard is “the railroad crossing
does not close when the train exists on the railroad “, and the
SC is “the railroad crossing must close when the train exists on
the railroad (SC1)”.

At third, the CSD is developed. The components of the
railroad crossing control system are the railroad control, the
railroad crossing & alarm device, the start alarm sensor A
and B, the stop alarm sensor C, and the train. All CAs, FBD
and input/output information between those components are
described into the CSD. Figure 10 shows the CSD.

At fourth, the UCAs are derived. The guide words that
identify the UCA are applied to the CAs in the CSD of Figure
10, and the UCAs are clarifi ed. Table 3 shows the results of
the extracts of the UCA. Here in after, the case that “The train
passes the railroad crossing when not rumbling warning.
(the bar of the railroad crossing does not close.) [UCA1], [SC1
violation]” is analyzed.

At fi fth, it investigates whether the UCA causes the hazard
(whether the UCA violates the SC). The 11 guide words that
identify the HCF are applied to the UCAs in the CSD one by
one, and each UCA is investigated whether it causes the hazard.
Figure 11 shows the results that the guide words that identify
the HCFs are assigned to the CSD. As a result, it is found that
six guide words are applicable to the railroad crossing control
system. Here, those six guide words are applied to all UCAs,
and it is investigated that the UCAs cause the Hazards. Table
4 shows the result. As for the UCA1, UCA1 causes the hazard
when applying the guide word (2) “inappropriate, ineffi cient
or missing control” and the guide word (4) “process input
missing or wrong “. Concretely, as for the guide word (2), it

Use-Case Diagram

Train

Control
railroad
crossing

Railroad crossing
control system

Railroad
crossing
control

Start alarm
senor

Stop alarm
sensor

Sensor Railroad crossing&
alarm device

Class
Diagram

maskStart()
maskStop()

maskStart()
maskStop()

closeBar&startAlarm()
openBar&stopAlarm()

pass()

existTrain()
existNotrain()

1

1

1

n

Start alarm sensor
A：start alarm
sensor

Stop alarm
sensor C：stop
alarm sensor

Start alarm sensor
A：start alarm
sensor

Figure 9: Outline of the railroad crossing control system.

090

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

Railroad
crossing
control

Start alarm
sensor

Stop alarm
sensor

Sensor Railroad crossing
& alarm device

Use-Case Diagram Class Diagram

Control
railroad
crossing

Railroad crossing
control system

Railroad
crossing
control

Railroad crossing
& alarm device

Sensor A: start
alarm sensor

Sensor B: start
alarm sensor

Sensor C: stop
alarm sensor

CA
closeBar&startAlarm()
openBar&stopAlarm()

CA
startMask()
stopMask()
existTrain()
existNoTrain

Train

CA
pass()

correspondenceControl Structure
Diagram

Railroad crossing control system

Train

Stop alarm
sensor C：Stop
alarm sensor

Start alarm sensor
A：Start alarm
sensor

Start alarm sensor
A：Start alarm
sensor

Figure 10: CSD of the railroad crossing control system.

Table 3: Extracted results of UCAs ([14], P.20, Table 4.4-2(modifi ed)).

Control
Action

Not providing causes hazard
Providing causes

hazard
Too early/too late, wrong order causes hazard

Stopping too soon/appliying too
long causes hazard

1
Close & start

warning

(UCA1) The train passes the railroad
crossing when not rumbling warning. (the bar

of the railroad crossing does not close.)
(SC1 violation)

The warning rumbles
when the train does

not come.

(UC2)The train arrives the railroad crossing
before rumbling the warning.

(Closing bar is too late.)
(SC1 violation)

Since the startMAsk instruction
is continued, the warning rumbles

continously even if the stopWarning
instruction is issued after passing

through the train.

2
Open & stop

warning
method

After the train passes the railroad crossing,
the warning rumbles.

(UCA3) The warning
stops rumbling

when the startMask
instruction is

invocated.
(SC2 violation)

(UCA3) the warmin stops before the train
passes the railroad crossing. (it is too early

to open the bar of the railroad crossing after
closing the bar.)
(SC2 violation)

(UCA1)Since the stopWarning
instruction continues after the train

passes the sensor, the warning does
not rumble even if the next train

accesses. (competing with thw stop
and start instruction)

(SC1 violation)

3

startMask
method
(Mask

enable)

When the train that passes A and c arrives B,
the warning rumbles again.

(UCA4) When the
train does not arrive,

thw startMask
instruction invocates
and the warning does

not rumbling.
(SC1 violation)

(UCA5)When the maskStart instruction to the
stop-warning sensor is delayed and is not
issued before the train passes the sensor,

the maskStart instruction will remain and the
warning will not be rumbling in the case that
two trains in the opposite direction access

continuously.
(SC1 violation)

(UCA6)The maskStart instruction
continues to be issued after the train
passes the start-Warning sensor in
the opposite side, and the warning

does not rumble even if the opposite
train acceses.
(SC1 violation)

4

stopMask
method
(Mask

disable)

(UCA6)As the stop maskStart instruction is
not issued to the start sensor on the opposite

side, the sensor does not start the warning
even when the opposite train accesses

(including the case that the train turn back
after issuing the maskStart)

(SC1 violation)

The warning rumbles
again.

Issuing the stopMask imstruction start
rumbling again, before the train passes B.

When the maskStop instruction
completes with maskStart

instruction, the warning rumbles
again because of the non-mask

operation.

091

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

is considered the following situations; “the control action for
the railroad crossing control when the train turns after passing
the railroad is inappropriate and it causes the hazard” or “the
competition between the continuing to stop the alarm and the
indicating to start the alarm causes the hazard”. As for the
guide word (4), it is considered the following situation; “As a
result of the defect of the start alarm sensor A, the loss of the

message from start alarm sensor A to the control apparatus
causes the hazard”. The hazard scenarios corresponding to
those cases are developed. Figure 12 shows the hazard scenario
in the case that “the control algorithm for the railroad crossing
control when the train turns after passing the railroad is
inappropriate and it causes the hazard”.

At sixth, the sequence diagrams corresponding to the

Railroad
crossing
control

Railroad
crossing &

alarm
device

Start
alarm

sensor A

Start
alarm

sensor B

Stop
alarm

sensor C

Train

Guide words:
・inadequate CA
・delayed operation

Guide words：
・inappropriate CA
・Inappropriate control algorithmGuide word：

・external information
missing

Guide word:
・unidentified or out-of-

range disturbance

CA:
closeBar&startAlarm()
openBar&stopAlarm()

CA:
start mask()
stopMask()
existTrain()
existNotrain()

Figure 11: Results if assigned guide words to CSD.

Table 4: Hazard scenarios derived from UCA and guide words ([14], P23, Table4.5-2(modifi ed)).

1. Control input
or external

information wrong
or missing

2. Inapproprite,
ineffective or missing

control action

3. Delayed
operation

4. process input
missing or wrong

5. Unidentifi ed or out-of-
range disturbance

6. Inadequate Control
Algorithm

(UCA1)The train passes
the railroad crossing when
not rumbling warning. (the
bar of the railroad crossing

does not close.)

ɸ

.Inappropriate control
for the train that truns

after the railroad
crossing passes.

.Competition with the
continuation of stop
warning and the new
issue start warning.

ɸ

.The failure of the
sensor A causes

the missing of the
instruction from A to
the railroad crossing

control.

ɸ ɸ

(UCA2)The train arrive the
railroad crossing before

rumbling warning. (closing
the bar is too late.)

ɸ ɸ
.Delay of the

warning device.
ɸ ɸ

.Delay of the action of
the control apparatus.

(UCA3) Rumbling warning
is stopped before the train
passed. (Opening the bar
is too early after closing

the bar.)

ɸ ɸ ɸ ɸ

C causes the short
circuit by the distrubance

before the train arrives
the railroad crossing
after train passes A.

ɸ

(UCA4) When the train does
not arrive, the startMask
instruction invocates and

the warning does not
rumbling.

ɸ
.Inappropriate state

control of the railroad
crossing.

ɸ ɸ ɸ
.Inappropriate state

control of the railroad
crossing.

(UCA5) The warning does
not rumble when the train

comes because of the delay
of issuring the markStop

instruction.

ɸ ɸ

.Delay of issuring
the mask stop

instruction with the
no support for the
high speed train.

.Distrubance by the
obstacle on the rail.

ɸ

.Inappropriate operation
of the control apparatus

causes the delay ini
issuing the maskstop

instruction.

(UCA6)The maskStart
instruction issue too late.

.Inappropriate
external input
(disturbance)

causes missing
of stopMask
instruction.

. The delay of issuring
the instruction for

the control appratus
causes missing the

stopMask instruction

.Inappropriate state
control causes the
missing maskStop

instruction.

.Inappropriate external
input causes the

missing of maskStop
instruction.

ɸ

.Delay of the
correspondence for non-
steady-state operation

causes the missing
maskStop instruction.

092

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

hazard scenario are developed, and the HCFs are assigned
to the classes. This task is the same as the task stated in the
section3.B.3) Here, the sequence diagram when after the train
from A turns to A after the train passes the stop-warning
sensor C is developed. Figure 13 shows the details of the hazard
scenario. Figure 14 shows the sequence diagrams when it occurs.
In Figure 14, after the train passes the stop alarm sensor C, the
start alarm sensor A and B are masked, the rear part of the
train turns and passes the start alarm sensor A. At this time,
as the bar of the railroad crossing is open and the alarm device
stop rumbling, even if the railroad crossing control issues the
new CA of openBar&stopAlarm method to the railroad crossing
apparatus, the railroad crossing does not work. Consequently,
because the train enters the railroad crossing when the bar of
the railroad crossing is opened, it becomes the hazard. Here, it
is assumed that the functions of the railroad crossing & alarm

device class, the start alarm sensor class, and the stop alarm
sensor class are simply sent CAs to the apparatuses through the
input/output interface and there is no trouble of the hardware.
As a result, the events of the hazard scenario are assigned only
to the railroad crossing control class (HCFs are assigned to the
methods in the railroad crossing control class). Considering the
sequence diagram, the methods that are assigned to this class
are existTrain method and existNoTrain method.

At seventh, the FMEA is conducted considering the sequence
diagrams. The existTrain method invokes a closeBar&startAlarm
method of the railroad crossing & alarm device class. Even
if this method is invoked, the bar of the railroad crossing is
still closed, and the alarm device is only rumbling. Therefore,
as there is a low possibility when this hazard occurs, the
countermeasures for this event are not applied. On the other

Stop alarm
senor C

Start alarm
sensor A

Start alarm
sensor BDirection

of travel

Scenario:
After the train from A passes the stop alarm sensor, the train stops.
When the rear part of the train turns, the train pass the opened railroad crossing.

Station Station

Rear part of
the train turns
back.

Figure 12: Example of hazard scenario ([14], P.24, Fig.4.5-2(modifi ed)).

Train
arrives A

Train
passes A

Train
arrives C

Train
passes C

Rear part
of Train

arrives C

Rear part
of Train

passes C

Front part
of Train

arrives C

Front part
of Train

passes C

Detect Train

No detect
Sensor A

Detect Train

No Detect
Sensor C

Detect Train

No Detect
Sensor B

Start warning

Stop warning

Start mask A

Stop mask A

Start mask B

Stop mask B

Start
warning

Stop
warning

Start
mask

Stop
mask

Rear part of Train passes
the railroad crossing

without warning.

Figure 13: Details of the hazard scenario of case 1.

093

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

hand, the existNoTrain method invokes an openBar&stopAlarm
method in the railroad crossing & alarm device. Generally,
the existTrain method and existNoTrain method should be
carried out in pairs. Additionally, the existTrain method and
existNoTrain method should be invoked alternately. “The
startup conditions for functions are not prepared” in Table 2
can be applied. Therefore, the setting of the startup conditions
and the setting of non-startup conditions are applicable as the
standard countermeasures. For example, the state transition
diagram is added to the railroad crossing control class (Figure
15). In the case that the message of existNoTrain method is
received when the state is in the waiting the train passing, the
following countermeasures are conducted; issue the emergency
message to the safety supervisor (the method that issues the
alarm is added to the railroad crossing control class), close
the bar of the railroad crossing, and rumble the alarm. Those
countermeasures reduce the rate of the incident that causes the
hazard.

Case 2

The UML system specifi cations, the accidents, the hazards,
SCs and CSD are same as the CASE 1. CASE2 corresponds to
the case that “The train arrive the railroad crossing before
rumbling the warning. (closing the bar is too late.) [UCA2], [SC1
violation])” in Table 3. It is investigated whether the UCA2 is
the hazard or not (UCA2 violates SC1).

As a result of applying 11 guide words that identify the HCFs
to CAs in the CSD, it is found that the case that guideword
“(3) delayed operation” occurs becomes the hazard. Figure 16
shows the details of the hazard scenario, and Figure 17 shows
the sequence diagrams.

In Figure 17, after the train passes the start alarm sensor
A, a closeBar&startAlarm method is invocated. Because the
invocation of the closeBar&startAlarm method is delayed for
some reason, the train enters the railroad crossing when the

pass()
trainExist()

Pass()
existNotTrain()

closeBar&startAlarm()

openBar&stopAlarm()

maskStart()

pass()

maskStop()
existTrain()

Rear part of the train pass
the railroad crossing

without warning

maskStart()

maskStop()

Train

：Railroad
crossing
control

：Railroad
crossing &

alarm device

Start alarm
sensor A：start
alarm Sensor

Start alarm
Sensor B：start
alarm sensor

Stop alarm
sensor C：stop
alarm sensor

Figure 14: Sequence diagram of case 1.

Pass the Train

Railroad crossing
unreached

Emergencyg

stop alarm sensor C. existNoTrain()

start alarm
sensor B.
existTrain()

Stop alarm sensor C.
existNoTrain()

Initial

start alarm sensor A.existTrain()

Stop

Figure 15: Added state transition diagram to railroad crossing control system.

094

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

bar of the railroad crossing is opened, and the alarm is stopped.
The hazard occurs when the existTrain method in the railroad
crossing class does not invocate the openBar&stopAlarm
method in the railroad crossing and alarm device class. FMEA is
conducted for the case. When the existTrain method invocates
the closeBar&startAlarm method, the method must be
invocated at top priority. “The startup conditions for functions
are not prepared” in Table 2 can be applied. Therefore, the
setting of the startup conditions and the setting of non-startup
conditions are applicable as the standard countermeasures.
For example, the closeBar&startAlarm method is invocated at

the beginning of the existTrain method, or other methods are
not invocated when the existTrain method is running. Those
countermeasures reduce the rate of the incident that causes the
hazard.

Case 3

The UML system specifi cations, the accidents, the hazards,
SCs and CSD are same as the CASE 1. CASE3 corresponds to
the case that “When the train does not arrive, the startMask
instruction invocates and the warning does not rumbling.
[UCA4], [SC1 violation]” in Table 3. It is investigated whether

Train
arrives A

Train
passes A

Train
arrives C

Train
passes C

Train
arrives B

Train
passes B

Detect Train

No detect
Sensor A

Detect Train

No Detect
Sensor C

Detect Train

No Detect
Sensor B

Start warning

Stop warning

Start mask A

Stop mask A

Start mask B

Stop mask B

Start
warning
with delay

Stop
warning

Start
mask

Stop
mask

Train arrives railroad crossing
without closing bar and warning.

When the train arrives the
railroad crossing, closing the
bar and staring warning do not
start, because of the delay of
invocation of the control
action with some reasons.

Figure 16: Details of the hazard scenario of case 2.

Train

：Railroad
crossing
control

：Railroad
crossing &

alarm device

Start Alarm
Sensor A：start
alarm sensor

pass()
existTrain()

pass()
existNoTrain()

Start alarm
sensor B: start
alarm Sensor

Stop alarm
sensor C：stop
alarm sensor

openBar&stopAlarm()

maskStart()

pass()

maskStop()
existTrain()

The train pass the railroad crossing
before acting the railroad crossing

and warning device. maskStart()

maskStop()

closeBar&startAlarm()

Figure 17: Sequence diagram of case 2.

095

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

the UCA4 is the hazard or not (UCA4 violates SC1). As a result
of applying 11 guide words that identify the HCFs to CAs in the
CSD, it is found that the case that guideword “(2) inappropriate,
ineffi cient or missing control action “ occurs becomes the
hazard. Figure 18 shows the details of the hazard scenario, and
Figure 19 shows the sequence diagrams.

In Figure 19, after the fi rst train passes the stop alarm
sensor C, the start alarm sensor A and B are masked. When
the fi rst train passes the start alarm sensor B, the start alarm

sensor B is released to be masked. After this situation, though
the second train enters and passes the start alarm sensor A, the
closeBar&startAlarm method is not invocated because the start
alarm sensor A is masked. As a result, the second train enters
the railroad crossing that the bar is opened and the alarm is not
rumbled, and this situation becomes the hazard.

According to the sequence diagram, when the fi rst Train
passes the stop alarm senor C, the start alarm sensor A and B
are masked. After this situation, as the start alarm sensor A is

1st Train
arrives &
passes A

1st Train
arrives &
passes C

1st Train
arrives &
passes B

2nd Train
arrive &

passes A

2nd Train
arrive &

passes C

2nd Train
arrives &
passes B

Detect Train

No detect
Sensor A

Detect Train

No Detect
Sensor C

Detect Train

No Detect
Sensor B

Start warning

Stop warning

Start mask A

Stop mask A

Start mask B

Stop mask B

Start
warning

Stop
warning

Stop
mask B

Stop
mask B

2nd Train passes
the railroad crossing
without closing bar

and warning.

Start
mask A
and B

Stop
warning

Start mask B CA is
issued in spite of no
Train access from B.

Start warning CA is
not issued because A
is masked.

Figure 18: Details of the hazard scenario of case 3.

pass()
existTrain()

pass()
existNoTrain()

closeBar&startAlarm()

openBar&stopAlarm()

startMask()

pass()

stopMask()
existTrain()

startMask()

stopMask()

Train1:
Tain

：Railroad
crossing
control

：Railroad
crossing &

alarm device

Start alarm
sensor A：start
alarm sensor

Start alarm
sensor B：start
alarm sensor

Stop alarm
sensor C：stop
alarm sensorTrain2:

Tain

The warning does not close
the railroad crossing

and does not start warning
because sensor A is masked.

pass()

Figure 19: Sequence diagram of case 3.

096

https://www.peertechz.com/journals/trends-in-computer-science-and-information-technology

Citation: Takahashi M, Anang Y, Watanabe Y (2020) A Hazard Analysis Method for Embedded Control Software with STPA. Trends Comput Sci Inf Technol 5(1):
082-096. DOI: https://dx.doi.org/10.17352/tcsit.000029

still masked, the closeBar&startAlarm method is not invocated
when the second Train passes the start alarm sensor A. This
case corresponds to the failure of the execution conditions.
Therefore, the setting of the startup conditions and the setting
of non-startup conditions are applicable as the standard
countermeasures. For example, the start alarm sensor A and B
are masked and released at the same timing, and the sensors
that are not involved are not masked. This countermeasure
reduces the rate of the incident that causes the hazard.

It is found that the adequate countermeasures are
similarly applied to the other hazard scenarios. As the result
of applying the proposed method, the hazards of the railroad
crossing control system can be clarifi ed, and the appropriate
countermeasures to avoid occurring the hazards can be found.
Consequently, the risks that the hazards occur are reduced, and
the safety of the target system becomes improved. On the other
hand, because there are many hazard scenarios, it is found that
an effi cient method for investigating the countermeasures is
required. Additionally, it is found that there is a probability that
the confl icts between the countermeasures occur because the
proposed method decide the countermeasures corresponding
to each hazard scenario. For that reason, it is found that the
method that checked the confl ict between the countermeasures
is required.

In these case studies, we conducted the design modifi cations
of the ECSW to avoid occurring the hazard. Regarding this
problem, it could be also possible to solve it by establishing
the standard operation procedure (rules) that did not permit
the detach and/or turn of the train between the sensor A and
B. Actually, when deciding the countermeasures, the safety,
the cost and the development time must be considered, and
adequate countermeasures, such as the modifi cation of the
standard operation procedures, the design modifi cation of
hardware, or the design modifi cation of the software, should
be selected. That is, the safer mechanisms need to be developed
effi ciently.

Future works

This paper proposes a safety analysis method cooperating
with the UML, STPA, and FMEA. The proposed method
analyzes the causes of the hazards that are occurred by the
interactions between the system components and proposes the
countermeasures that avoid occurring the hazards. As a result
of the application of the proposed method, the safer system can
be developed. On the other hand, it is found that the proposed
method requires a long time for analyzing hazard and planning
the countermeasures. Especially, in the case when analyzing
the hazards of the complex system, because the system includes
many hardware and software, and the system has many hazards
and the hazard scenarios, it would occur the problem that the
decided countermeasures applying the proposed method have
confl icts in each other. In the future, we will propose a method
that describes the SCs using logical expressions and analyzes
them automatically using a logical calculation. As a result, a
mechanism that will be able to conduct adequate and effi cient

safety analysis will be developed. Additionally, we will apply
the proposed method to the larger system, clarify the weak
points of the method, propose the countermeasures, feedback
them into the proposed method, and improve the proposed
method.

Acknowledgments

This research was supported by Grant-in-Aid for Scientifi c
Research (C) of the Japan Society for the Promotion of Science
“Integrated Analysis Method for hazard caused by software
interaction cooperating with multiple safety analysis methods.”

References

1. Leveson N (2011) Engineering a Safer World, The MIT Press.

2. Japanese Standards Association (2017) JIS2304 Medical Device Software - -
Software Life Cycle Process, Japanese Standards Associations.

3. International Electro technical Commission (2006) ICE 62304 Medical
Device Software, International Electro technical Commission. Link:
https://bit.ly/2IODVVD

4. International Electrotechnical Commission (2016) ICE 82304-1 Health
Software - - Part 1: General Requirements for Product Safety, International
Electrotechnical Commission. Link: https://bit.ly/35LWAdv

5. International Society for Pharmaceutical Engineering (2008) GAMP5 A Risk-
Based Approach to Compliant GxP Computerized Systems, International
Society for Pharmaceutical Engineering.

6. International Organization for Standardization (2011) ISO26262 Road vehicles
– Functional safety, International Organization for Standardization.

7. Radio Technical Commission for Aeronautics (2011) DO-178C Software
Considerations in Airborne Systems and Equipment Certifi cation, Radio
Technical Commission for Aeronautics.

8. Japan Aerospace Exploration Agency (2008) JAXA JMR001 System Safety
Standard, Japan Aerospace Exploration Agency.

9. Takahashi M, Nanba R, Fukue A (2012) Proposal of Operational Risk
Management Method Using FMEA for Drug Manufacturing Computerized
System. Transaction of the Society of Instrument and Control Engineers 48:
285-294. Link: https://bit.ly/3pJ9d0E

10. Weber W, Tondok H, Bachmayer M (2003) Enhancing Software Safety by
Fault Trees: Experiences from an Application to Flight Critical SW. Proc of
SAFECOMP 289-302. Link: https://bit.ly/3lL3IMI

11. Leveson N, Harvey PR (1983) Analyzing Software Safety. IEEE Transaction on
Software Engineering 9: 569-579. Link: https://bit.ly/2HdVKfV

12. Leveson N, Cha S, Shineall T (1991) Safety verifi cation of Ada Programs Using
Software Fault Trees. IEEE Software 8: 48-59. Link: https://bit.ly/3lQINrK

13. Takahashi M, Nanba R (2014) A Proposal of Fault Tree Analysis for
Control Programs. Proc of SICE Annual Conference 1719-1724. Link:
https://bit.ly/35HIB8k

14. Pai G, Dugan J (2002) Automatic Synthesis of Dynamic Fault Tree from UML
System Model. Proc of 13th International Symposium on Software Reliability
Engineering. Link: https://bit.ly/3kKF4KX

15. Information-technology Promotion Agency (2016) The fi rst step of STAMP/
STPA - A New Safety Analysis Method based on the System Oriented Thinking.
Information-technology Promotion Agency.

Copyright: © 2020 Takahashi M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

