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Introduction and results

The well-known Newtonian n-body problem concerns 
with the motion of n mass points with positive mass mi 
moving under their mutual attraction in Rd in accordance with 
Newton’s law of gravitation.

The equations of the motion of the n-body problem are 
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where we have taken the unit of time in such a way that the 
Newtonian gravitational constant be one, and ri€R

d (i=1…,n) 

denotes the position vector of the i-body, =| |ij i jr r r  is the 

Euclidean distance between the i-body and the j-body.

The solutions of the 2-body problem (also called the Kepler 
problem) has been completely solved, but the solutions for the 
n-body for n>2, is still an open problem.

For the Newtonian n-body problem the simplest possible 
motions are such that the confi guration formed by the n-bodies 
is constant up to rotations and scaling, such motions are called 
the  homographic solutions of the n-body problem, and are the 
unique known explicit solutions of the n-body problem when 
n>2. Only some special confi gurations of particles are allowed 
in the homographic solutions of the n-body problem, called by 
Wintner [1]  central confi gurations. Also, central confi gurations 
are of utmost importance when studying bifurcations of the 
hypersurfaces of constant energy and angular momentum, for 
more details see Meyer [2] and Smale [3]. These last years some 
central confi gurations have been used for different missions of 
the spacecrafts in the solar system, see for instance [4,5].

More precisely, let 
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be the total mass  and the center of masses   of the n bodies, 
respectively.
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A confi guration r=(r1,…,rn)  is called a central confi guration   if 
the acceleration vectors of the n bodies are proportional to their 
positions with respect to the center of masses with the same 
constant  of proportionality, i.e. 

3
=1,

( )
= ( ), 1 ,

n
j i j

j
j j i ij

m r r
r c j n

r





  

            (1)

where λ is the constant of proportionality.

Equations (1) are strongly nonlinear and to fi nd the explicit 
central confi gurations (r1,…,rn) in function of the masses m1,….
mn when n>3 is an unsolved problem.

There is an extensive literature on the study of central 
confi gurations, see for instance Euler [6], Lagrange [7], 
Hagihara [8], Llibre [9,10], Meyer [2], Moeckel [11], Moulton 
[11], Saari [12], Smale [3], ..., and the papers quoted in these 
references.

In this paper we are interested in the planar central 
confi gurations of a circular restricted 4-body problem. Of 
course, for the central confi gurations of the 4-body problem 
there are many partial results, see for instance the papers [13-
66].

We note that the set of central confi gurations is invariant 
under translations, rotations, and homothecies with respect 
their center of mass. It is said that two central confi gurations 
are equivalent if after having the same center of mass (doing 
a translation if necessary) we can pass from one to the other 
through a rotation around its common center of mass and a 
homothecy. This defi nes a relation of equivalence in the set 
of central confi gurations. From now on when we talk about 
a central confi guration, we are talking on a class of central 
confi gurations under this relation of equivalence.

The objective of the present article is to study the central 
confi gurations of the circular restricted 4-body problem with 
three equal primaries in the collinear central confi guration of 
the 3-body problem. We recall that for the 3-body problem when 
the three masses are equal there is a unique collinear central 
confi guration, where the mass in the middle equidistant from 
the other two, of course the equal masses can be permuted in 
the positions of this confi guration.

As in any circular restricted problem the objective is to 
describe the motion of the infi nitesimal mass with respect to 
the primaries. Usually this problem is studied in a rotating 
system of coordinates where the positions of the primaries 
remain fi xed, see for more details on the restricted problems 
the book of Szebehely [67].

More precisely, taking the unit of mass equal to the masses 
of the three primaries and since a central confi guration is 
invarinat under rotations and homothecies through its center 
of mass without loss of generality we can assume that the 
position vector rj of the three primaries with masses  m1= m2= 
m3= 1 are 

1 1 1 2 2 2 3 3 3= ( , ) = ( 1,0), = ( , ) = (0,0), = ( , ) = (1,0).r x y r x y r x y  
                 (2)

 We denote the position of the infi nitesimal mass m4 = 0 by 
r4 = (x4,y4) = (x,y). Then our main result is the following one.

Theorem 1  The circular restricted 4-body problem with three 
primaries of equal masses m1= m2= m3= 1 with position vectors given 
in (2), and one infi nitessimal mass m4 = 0  with position vector r4 
=(x4,y4) =(x,y) have the following six central confi gurations with r4 
= Pj  for j=1 being:  

(i) 1 = ( , ) = (0,1.1394282249562009..)p x y , where the 

value of the coordinate y  is a root of the polynomial 

2 3 4 5 6 7 8 9 10 1216 48 40 48 120 23 120 75 40 75 25y y y y y y y y y y           ; 

(ii)  2 = ( , ) = (0, 1.1394282249562009..)p x y  ; 

(iii) 3 = ( , ) = (1.7576799791694022..,0)p x y , where the 

value of the coordinate y  is a root of the polynomial 

3 4 5 74 5 12 10 5x x x x     ; 

(iV) 4 = ( , ) = (0.49466649101736443..,0)p x y , where 

the value of the coordinate y  is a root of the polynomial 

2 3 4 5 74 8 21 4 10 5x x x x x      ; 

(v)  5 = ( , ) = ( 0.49466649101736443..,0)p x y  ; 

(vi)  6 = ( , ) = ( 1.7576799791694022..,0)p x y  . 

Figure 1. 

The proof of Theorem 1 in given in the next section.

Figure 1: The six central confi gurations of the circular restricted 4-body probl 
qem with three equal primaries in the collinear central confi guration of the 3-body 
problem. The three primaries are indicated with the big circles, and the position of 
the infi nitesimal mass in the corresponding six central confi gurations is indicated 
with a small circle.
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Proof of theorem 1

From  (1) we obtain the following eight equations for the 
central confi gurations of the 4-body problem in the plane 
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Where c= (c1, c2). Substituting in (3) the expressions (2), 
m1= m2= m3= 1, m4 = 0 and r4 =(x4,y4) =(x,y), corresponding to 
our circular restricted 4-body problem these eight equations 
reduce to 

 

     

     

1 3

2 5 6 7

4 3/2 3/2 3/22 2 2 2 2 2

8 3/2 3/2 3/22 2 2 2 2 2

5= = = 0,
4

= = = = 0,
1 1= = 0,

( 1) ( 1)

1 1 1= = 0.
( 1) ( 1)

e e

e e e e
x x xe x

x y x y x y
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x y x y x y
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



 

 
   

    

 
    
      

Therefore = 5 / 4  , and the position vector of r4 =(x4,y4) 
in order to have a central confi guration of the circular restricted 
4-body problem must be a real solution of the system 

 

     

     

4 3/2 3/2 3/22 2 2 2 2 2

8 3/2 3/2 3/22 2 2 2 2 2

5 1 1= = 0,
4 ( 1) ( 1)

5 1 1 1= = 0.
4 ( 1) ( 1)

x x xe x
x y x y x y

e y
x y x y x y

 
  

    

 
   
      

In Figure 2 we have shwon the curves e4 (x,y) =0 and e8 (x,y) 
=0, and in Figure 3 the intersection of these two curves. We see 

that these two curves intersect in six points inside the rectangle 
2= {( , ) : 2.2 2.2, 2.2 2.2}R x y x y       . Computing the 

coordenates of these six points numerically using the Newton 
method (see for instance [68]), we get the six points Pj which 
appear in the statement of Theorem 1. Of course we have 
omitted the three points where are located the three primaries 
in the intersections of the two curves  e4 (x,y) =0 and e8 (x,y) =0, 
because there really these two curves are not defi ned. Now we 
shall prove that these six points obtained numerically really are 
solutions of the system e4 (x,y) =0 and e8 (x,y) =0.

We note that equations e4 (x,y) =0 and e8 (x,y) =0  are 
invariant if we change x by -x, and y by -y, so if  (x,y)  is a 
solution of the system e4 (x,y) =0 and e8 (x,y) =0,  also (-x,y), 
(x, -y) and (-x,-y) are solutions. So in order to prove Theorem 
1 we only need to study the solutions of system e4 (x,y) =0 and 
e8 (x,y) =0 satisfying 0x   and 0y  . Moreover, from Figure 3 
we see that all the solutions are of the form (x,0) or (0,y), and 
since in the origin  (0,0) there is one primary, we must look 
only for the solutions (x,0) or (0,y) with x > 0 and y> 0.

First we look for the solutions (0,y) with y>0,  then system 
e4 (x,y) =0 and e8 (x,y) =0  reduce to 

 3/2 22

5 2 1 = 0,
4 1
y y

yy
 


               (4)

 or equivalently to 

3 2 3/2 38 = (1 ) ( 4 5 ).y y y  

Squaring the both sides of the this equation we get the 
equation 

2 3 4 5 6 7 8 9 10 1216 48 40 48 120 23 120 75 40 75 25 = 0.y y y y y y y y y y          

This polynomial equation has only two real roots 

 
0.7625005146027564.. 1.1394282249562009..,and

but only the second root satisfi es equation (4). This 
provides the solution P1 of Theorem 1, and consequently also 
the solution P2.

(a) The curve e4 (x, y ) = 0 (b) The curve e8 (x, y ) = 0

Figure 2: The curves e4(x,y) = 0 and e8(x,y) = 0 in the rectangle (x,y)  [−2.2,2.2] × 
[−2.2,2.2].

Figure 3: In this picture we can see the six intersection points between the two 
curves e4(x,y) = 0 and e8(x,y) = 0 different from the positions of the primaries, which 
provide the six central confi gurations of the circular restricted 4-body problem with 
three primaries of equal masses at the collinear confi guration of the 3body problem 
and an infi nitisimal mass.
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Now we look for the solutions (x,0) with (x>0) of the system 
e4 (x,y) =0 and e8 (x,y) =0. For these solutions the system reduce 
to 

2 3/2 3/2
5 1 1 1= ,
4 |1 | |1 |
x x x
x x x

 
 

                  (5)

 squaring the both sides of the previous equality we obtain 

 
2 3

4 4 4 2 3
1 5 25 1 1 ( 1)(5 4) = 0.

2 16 ( 1) ( 1) 2 | 1|
x x x

x x x x x x
 

    
  

Writting this equation with a common denominator, which 
only vanishes at the positions of the primeries, its numerator 
equal zero can be written as 

 
5 2 4 3 3 2 3 4 5

6 7 8 9 10 11 12 14

8( 1) ( 1) (5 4) =| 1| (16 64 40 96 288
39 112 84 160 150 40 100 25 ).
x x x x x x x x x
x x x x x x x x
       

       

Squaring again the both sides of the this equality we get 

 
6 3 4 5 7 2 3 4 5 7

2 3 4 5 7 2 3 4 5 7

( 1) ( 4 5 12 10 5 )( 4 8 11 4 10 5 )
( 4 8 21 4 10 5 )( 4 16 5 4 10 5 ) = 0.
x x x x x x x x x x

x x x x x x x x x x
           

           

The real zero x = 1 is not good because it correspond to the 
position of a primary. The unique real root of the polynomial 
-4+5x3-12x4-10x5+5x7  is 1.7576799791694022.. which also is 
a zero of equation (5), and consequently provides the central 
confi guration  P3, and by the symmetries of the equations of the 
central confi gurations also provides the central confi guration 
P6.

The unique real root of the polynomial -4+8x2+21x3-
4x4-10x5+5x7 is 0.4946664910171345…  which also is a zero 
of equation (5), and consequently provides the central 
confi guration P4, and due to the symmetries of the equations 
of the central confi gurations also provides the central 
confi guration P5.

The real roots of the polynomials -4+8x2-11x3-4x4-10x5+5x7 
and 4+16x2+5x3+4x4-10x5+5x7  are not zeros of the equation (5). 
This completes the proof of Theorem 1.
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