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Abstract

In this paper we classify the central configurations of the circular restricted 4-body problem with three primaries with equal masses at the collinear configuration of

the 3-body problem and an infinitisimal mass.

Introduction and results

The well-known Newtonian n-body problem concerns
with the motion of n mass points with positive mass m,
moving under their mutual attraction in R? in accordance with
Newton’s law of gravitation.

The equations of the motion of the n-body problem are

om (11,
= Z #) 1<i<n
J=L# Ty

b

where we have taken the unit of time in such a way that the
Newtonian gravitational constant be one, and r ¢ (i=1...,n)

denotes the position vector of the i-body, 7; =| 7, —7;, | is the
Euclidean distance between the i-body and the j-body.
The solutions of the 2-body problem (also called the Kepler

problem) has been completely solved, but the solutions for the
n-body for n>2, is still an open problem.

For the Newtonian n-body problem the simplest possible
motions are such that the configuration formed by the n-bodies
is constant up to rotations and scaling, such motions are called
the homographic solutions of the n-body problem, and are the
unique known explicit solutions of the n-body problem when
n>2. Only some special configurations of particles are allowed
in the homographic solutions of the n-body problem, called by
Wintner [1] central configurations. Also, central configurations
are of utmost importance when studying bifurcations of the
hypersurfaces of constant energy and angular momentum, for
more details see Meyer [2] and Smale [3]. These last years some
central configurations have been used for different missions of
the spacecrafts in the solar system, see for instance [4,5].

More precisely, let
mn +--+mr,
C =
M

2

M=m+--+m,

be the total mass and the center of masses of the n bodies,

respectively.
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A configuration r=(r,,..,,r,) is called a central configuration if
the acceleration vectors of the n bodies are proportional to their
positions with respect to the center of masses with the same
constant ) of proportionality, i.e.

nom (1, —r,)
N TG ;
S BT G —e). 1<j<n,

J=Lj#i ’/;'j (1)
where ) is the constant of proportionality.

Equations (1) are strongly nonlinear and to find the explicit
central configurations (r,,...,r,) in function of the masses m,,....
m_when n>3 is an unsolved problem.

There is an extensive literature on the study of central
configurations, see for instance Euler [6], Lagrange [7],
Hagihara [8], Llibre [9,10], Meyer [2], Moeckel [11], Moulton
[11], Saari [12], Smale [3], ..., and the papers quoted in these
references.

In this paper we are interested in the planar central
configurations of a circular restricted 4-body problem. Of
course, for the central configurations of the 4-body problem
there are many partial results, see for instance the papers [13-
66].

We note that the set of central configurations is invariant
under translations, rotations, and homothecies with respect
their center of mass. It is said that two central configurations
are equivalent if after having the same center of mass (doing
a translation if necessary) we can pass from one to the other
through a rotation around its common center of mass and a
homothecy. This defines a relation of equivalence in the set
of central configurations. From now on when we talk about
a central configuration, we are talking on a class of central
configurations under this relation of equivalence.

The objective of the present article is to study the central
configurations of the circular restricted 4-body problem with
three equal primaries in the collinear central configuration of
the 3-body problem. We recall that for the 3-body problem when
the three masses are equal there is a unique collinear central
configuration, where the mass in the middle equidistant from
the other two, of course the equal masses can be permuted in
the positions of this configuration.

As in any circular restricted problem the objective is to
describe the motion of the infinitesimal mass with respect to
the primaries. Usually this problem is studied in a rotating
system of coordinates where the positions of the primaries
remain fixed, see for more details on the restricted problems
the book of Szebehely [67].

More precisely, taking the unit of mass equal to the masses
of the three primaries and since a central configuration is
invarinat under rotations and homothecies through its center
of mass without loss of generality we can assume that the
position vector r; of the three primaries with masses m,= m,=
m,=1are

1= (x, 1) = (=1,0), 1, = (x,,,) = (0,0), 1, = (x5, ;) = (1,0).
(2)

We denote the position of the infinitesimal mass m, = 0 by
r,= (xA,y4) = (x,y). Then our main result is the following one.

Theorem 1 The circular restricted 4-body problem with three
primaries of equal masses m,= m,= m_ = 1with position vectors given
in (2), and one infinitessimal mass m,= o with position vector r,
=(x,,y,) =(x,y) have the following six central configurations with r,
= P, for j=1 being:

i) p, = (x,»)=(0,1.1394282249562009..)  where the

value of the coordinate J is a root of the polynomial

—16—48y” +40y° —48y* +120y° +23y° +120y" —75y" +40y° =75y =25y".
)

() P, = (x,)=(0,—1.1394282249562009..)

(iii) p;=(x,y)=(1.7576799791694022..,0), where the

value of the coordinate ) is a root of the polynomial

—4+5x —12x* —10x° +5x7°

(V) p, = (x,y)=(0.49466649101736443..,0), where
the value of the coordinate ) is aroot of the polynomial

—4+8x% +21x° —4x" —10x° +5x7°
() Ps = (%) =(-0.49466649101736443..,0).
wi) Ps = (x,»)=(=1.7576799791694022..,0)

Figure 1.

The proof of Theorem 1 in given in the next section.
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Figure 1: The six central configurations of the circular restricted 4-body probl
gem with three equal primaries in the collinear central configuration of the 3-body

problem. The three primaries are indicated with the big circles, and the position of
the infinitesimal mass in the corresponding six central configurations is indicated
with a small circle.
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Proof of theorem 1

From (1) we obtain the following eight equations for the
central configurations of the 4-body problem in the plane

- (g —x))

e, = > - =Ax;,—¢q), 1<j<4,
J=lj#i 7}}'
&omi(y,—y,) )
€is = Z . 3 —= Z’(y/ -G )5 1< J= 45
ey 3)

Where c= (c, c,. Substituting in (3) the expressions (2),
m=m,= m;=1, m, = 0 and r, =(x,,y,) =(x,y), corresponding to
our circular restricted 4-body problem these eight equations
reduce to

e, = —dx— x . 1+x 4 I-x -0,

(2 +?)" (@12 +)?)"

e =y -A- ! - ! - ! =0.

(x2 1 y? )3/2 ((x—1)2 1y )3/2 ((x+1)2 1y )3/2

Therefore 4 =—5/4 ,and the position vector of r, =(x,,y,)
in order to have a central configuration of the circular restricted
4-body problem must be a real solution of the system

5 X 1+x 1-x
e, =—x- - + =0,

(x2 1y )3/2 ((x+1)2 Ty )3/2 ((x—1)2 by )3/2

o=y %_ 1 1 ~ 1 o

(x2 +)° )3/2 ((x—l)2 +y° )3/2 ((x+1)2 +)° )3/2

In Figure 2 we have shwon the curves e . (x,y) =0 and e, (x,y)
=0, and in Figure 3 the intersection of these two curves. We see

that these two curves intersect in six points inside the rectangle
R={(x,y)eR*:—22<x<22,-22<y<22}. Computing the
coordenates of these six points numerically using the Newton
method (see for instance [68]), we get the six points P, which
appear in the statement of Theorem 1. Of course we have
omitted the three points where are located the three primaries
in the intersections of the two curves e, (x,y) =0 and e, (x,y) =0,
because there really these two curves are not defined. Now we
shall prove that these six points obtained numerically really are
solutions of the system e, (x,y) =0 and e, (x,y) =0.

We note that equations e, (x,y) =0 and e (x,y) =0 are
invariant if we change x by -x, and y by -y, so if (x,y) is a
solution of the system e, (x,y) =0 and e; (x,y) =0, also (-x,y),
(x, -y) and (-x,-y) are solutions. So in order to prove Theorem
1 we only need to study the solutions of system e, (x,y) =0 and
e, (x,y) =0 satisfying x>0 and ¥ 20. Moreover, from Figure 3
we see that all the solutions are of the form (x,0) or (0,y), and
since in the origin (0,0) there is one primary, we must look
only for the solutions (x,0) or (0,y) with x > 0 and y> 0.

First we look for the solutions (0,y) with y>0, then system
e, (x,y) =0 and e, (x,y) =0 reduce to

(4)
or equivalently to

8y’ =(1+y*)*(-4+5)").

Squaring the both sides of the this equation we get the
equation

—16-48y" +40y° —48y* +120y° +23y° +120y" —75y° +40y° —75y'° —25y"* = 0.

This polynomial equation has only two real roots

0.7625005146027564.. and 1.13942822495620009..,

but only the second root satisfies equation (4). This
provides the solution P, of Theorem 1, and consequently also
the solution P,.

1 0 1

-1 ] 1

(a) The curve es(x,y)=0 (b) The curve eg(x,y)=0

Figure 2: The curves e (xy) = 0 and e,(x,y) = 0 in the rectangle (xy) e [-2.2,2.2] x
[-2.2,2.2].

Figure 3: In this picture we can see the six intersection points between the two
curves e,(xy) = 0 and e,(xy) = 0 different from the positions of the primaries, which
provide the six central configurations of the circular restricted 4-body problem with
three primaries of equal masses at the collinear configuration of the 3body problem
and an infinitisimal mass.
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Now we look for the solutions (x,0) with (x>0) of the system
e, (x,y) =0 and e, (x,y) =0. For these solutions the system reduce
to

S5x 1

4 X

1+x
|1+x|3/2 ’

1—x

|1_x|3/2 o

(5)

squaring the both sides of the previous equality we obtain

25x* 1 1
+ —_
16  (x=1D* (x+1)*

1.5
xt 2x

(=X -4 _
2x7 | x—1f

0.

Writting this equation with a common denominator, which
only vanishes at the positions of the primeries, its numerator
equal zero can be written as

8(x—1)x*(x+1)*(5x’ —4)=| x—1 (16— 64x* —40x> +96x"* + 288
—39x% —112x" —84x® +160x° +150x"° —40x" =100x"* +25x').

Squaring again the both sides of the this equality we get

(x—D*(=4+5x° —12x" —10x° +5x7)(~4 +8x* —11x* —4x* —~10x° +5x7)
(—4+8x7 +21x° —4x* —10x° + 5x7)(—4 +16x" +5x° +4x* =10x" +5x7) =0.

The real zero x = 1 is not good because it correspond to the
position of a primary. The unique real root of the polynomial
-4+5X3-12X4-10X5+5X7 is 1.7576799791694022.. which also is
a zero of equation (5), and consequently provides the central
configuration P,, and by the symmetries of the equations of the
central configurations also provides the central configuration
P,.

The unique real root of the polynomial -4+8x2+21x3-
4X4-10X5+5X7 iS 0.4946664910171345... which also is a zero
of equation (5), and consequently provides the central
configuration P,, and due to the symmetries of the equations
of the central configurations also provides the central
configuration P,.

The real roots of the polynomials -4+8x>-113-/4x4-10X5+5X7
and 4+16x>+5x3+4x%-10x5+5X7 are not zeros of the equation (5).
This completes the proof of Theorem 1.
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