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Abbreviations

DSMC: Direct Simulation Monte Carlo; SCR: Surrounding 
Cell Registration; CCR: Cartesian Cell Registration;  BCP: 
Background Cartesian Grid Position; AC: Area Comparison

Introduction

Particle searching and positioning are the major time-
consuming processes in the Direct Simulation  Monte Carlo 
(DSMC) method [1,2] and multi-phase fl ow calculations [3-5]. 
When the Cartesian grid system is used, particle searching and 
positioning are quite easy because the identifi cation number 
given to the cell occupied by a target particle can be computed 
from an algebraic expression. However, in the Cartesian 
grid system, the fl ow over complex geometries is diffi cult 
to describe and such descriptions are inaccurate, limiting 
the engineering applicability of the Cartesian grid system. 
On the other hand, the structured grid system can simulate 
complex geometries with a better quality of body fi tting and 
better accuracy of object boundary calculation as compared to 
the Cartesian grid system [6]. Moreover, the quality of body 

fi tting for complex geometries is even better with unstructured 
grid systems such as those used in industrial applications [7-
9]. However, structured and unstructured grid systems for 
complex geometries necessitate the time-consuming process 
of searching a huge number of cells to position target particles.

By taking advantage of the Cartesian grid system to 
effi ciently search cells, Liang, et al. [10] proposed a DSMC 
method that combines two levels of Cartesian grid systems 
with an unstructured triangular grid system. However, 
as pointed out by Wang, et al. [11], although this method 
improved the calculation effi ciency, several calculations 
must be performed separately at the junction of two types of 
grids, which is relatively tedious. Chuncai, et al. [12] divided 
the computational domain into various rectangular regions 
of Cartesian grid systems with a small number of triangular 
elements. The particle trajectory is tracked by searching the 
rectangular regions fi rst and then the triangular elements. This 
method also improved calculation effi ciency. However, the grid 
cell system is limited to a triangular grid system, and searching 
grids in small areas can still be time-consuming.
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Wang, et al. [11], also proposed the background Cartesian grid 
position (BCP) technique for two-dimensional computations. 
In this technique, a structured grid system is superposed on a 
layer of a background Cartesian grid system, and the geometric 
relationship between the structured and background grids 
is established in advance to limit the cells to search later. 
Although their results showed a signifi cant decrease in the 
computational time required for particle positioning , BCP is 
limited to structured grid systems. Furthermore, applying BCP 
to three-dimensional grids may be somewhat diffi cult.

First, to overcome the above limitations, two methods 
are herein introduced to limit the cells to search only for 
positioning a target particle in a structured or unstructured 
grid system are introduced. The fi rst is called the Surrounding 
Cell Registration (SCR) method and is described in Section 2.1. 
In this method, the cell numbers of the cells surrounding the 
central cell are registered with the central cell in advance to 
limit the cells to be searched later. It is demonstrated that a 
 program with this method runs faster than those with other 
methods because SCR has the least number of cells to search 
among the studied methods. However, it should be noted that 
SCR and the other methods mentioned later have a drawback 
in that the cell numbers of the cells in which the particles are 
introduced must be known or given in advance. This drawback 
is overcome by the second method, which is called the Cartesian 
Cell Registration (CCR) method and is described in Section 2.2. 
CCR uses a Cartesian grid as a background two-dimensional 
grid system, as in the method proposed by Wang, et al. [11], but 
in a completely different manner; our method can be applied to 
both structured and unstructured grids. 

Section 4.2 compares the performance of SCR and CCR 
with that of the method of searching all the cells until the 
cells occupied by the target particles are found (the brute-
force method). For two-dimensional potential fl ow around a 
circular cylinder, as an application of the proposed methods, 
it is shown that computational programs with both methods 
are almost 200 times faster than a program with the brute-
force approach. Moreover, the concepts of SCR and CCR are 
simple enough to apply to three-dimensional grid systems 
quite easily. In this paper, the present methods are not applied 
to DSMC but to a simple potential fl ow. However, this fl ow is 
enough to study computational speeds of the present methods.

While searching cells using the proposed methods, the 
cell in which the target particle exists must be determined; 
in other words, the target particle must be positioned. Wang, 
et al. [11] explains this point as follows. “A widely used particle 
positioning algorithm has been proposed by R. Chorda (RC) method 
[13]. The core of RC positioning method is to fi nd the grid intersecting 
with particle motion trajectory through searching, and then make 
specifi c mathematical judgment on these grids one by one, to fi nd 
the grid where the particle is fi nally located. Particle to the left (P2L) 
and Trajectory to the left (T2L) are the two important mathematical 
criteria used in RC method [sic].” In short, P2L fi nds the cell 
occupied by the target particle, while T2L detects the exit 
edge of the cell at which a trajectory of the particle exits. P2L 
was fi rst introduced by Zhou, et al. [14], following which this 
method was improved and applied to various geometries by 

many researchers [13,15,16]. Instead of T2L, Reji, et al. [17] 
presented a method based on geometric calculation. However, 
it must be pointed out that, in P2L and T2L, the vertices of 
each cell must be ordered anticlockwise, which makes them 
somewhat complicated to apply to three dimensions. Moreover, 
the computer program must evaluate if statements as many 
times as the number of edges for each target cell to position 
a target particle. This increases the computational time, as 
demonstrated in Section 4.1. Moreover, the application of 
P2L and T2L to three dimensions increases the number of if 
statements.

Second, to overcome the above shortcoming, a simple 
and easy-to-apply method called the Area Comparison (AC) 
method is introduced. The AC method is used to fi nd the cell 
occupied by a target particle or to position the target particle 
in Section 3.1 and to detect the exit edge in Section 3.2. Both 
these tasks can be performed by comparing areas only once; 
in other words, a computer program with this method requires 
only one if statement per target cell or edge. Further, in the 
AC method, the vertices of a cell are not necessarily ordered 
anticlockwise; rather, they may be randomly ordered. As 
demonstrated in Section 4.1, a computer program with the AC 
method runs 1.15–1.2 times faster than P2L. Moreover, the AC 
method may be applied intuitively to three-dimensional grids 
by comparing volumes, in which case the method is called the 
volume comparison method.

Limiting the cells to search

Surrounding Cell Registration (SCR) method: Figure 1 
shows a portion of the quadrangular grid system considered 
here. The grid system may be structured or unstructured, and 
it may have  any polygonal structure other than a  quadrangular 
structure. In addition, the cells may be numbered sequentially 
or arbitrarily. In Figure 1, the cell C0 is the central cell. The cell 
numbers of the eight cells C1–C8 surrounding the central cell C0 
are registered with C0.  I n a computer program, the array CN for 
the central cell C0 has the following elements, in which C0 is 
the cell number of the cell C0: 

CN[C0, 1] = the cell number of C1 (10, for example).

CN[C0, 2] = the cell number of C2 (13, for example).
 .
 .

CN[C0, 8] = the cell number of C8 (1111, for example).

Figure 1: Central cell C0 and surrounding cells C1–C8 of a quadrangular grid system.
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Each cell in the quadrangular grid system shown in Figure 
1 has eight surrounding cells, except for cells at the boundary. 
For example, the cells on the surface of a circular cylinder have 
only fi ve surrounding cells. The number of surrounding cells 
varies with the type of grid system. In a computer program, 
a surrounding cell is chosen if it shares at least one of its 
vertices (not edges) with the central cell. With this criterion, 
the cells that share edges as well as vertices with the central 
cell are chosen. Moreover, this registration method enables 
the treatment of cases in which the particle trajectory passes 
through a vertex (Figure 2, dotted arrow) or through a cell 
(dashed arrow) without any auxiliary calculation such as that 
performed in [14]. 

After the registration of the all the eight surrounding cells 
with the central cell C0, let the next cell C1 be the central cell. 
Now, the cell numbers of the eight cells surrounding C1 are 
registered with C1 as follows:

CN[C1, 1] = the cell number of C2 (13, for example).

CN[C1, 2] = the cell number of C3 (40, for example).
 .
 .

CN[C1, 8] = the cell number of C8 (1111, for example).

Some of the cells for the above registration are not shown 
in Figure 1.

This registration process is repeated for all cells, and the 
registration is performed only once. By using these registration 
data, computationally expensive cell searching can be avoided 
because the number of the target cells to search is at most nine 
(the central cell and eight surrounding cells) for each target 
particle to be positioned. The computational effi ciency of the 
surrounding cell registration method is described in Section 
4.2.

The concept of SCR is similar to that of “mesh connectivity” 
proposed by Macpherson, et al. [16], which refers to the sharing 
of the same faces by cells. In their paper [16], they treated a 
particle passing through a cell (dashed arrow in Figure 2) in 
a few steps, while SCR requires only one step, even when the 
particle passes through a vertex (dotted arrow in Figure 2), as 
explained in Section 3. Furthermore, their method needs to 
store a vector describing the center position of each edge as 
well as each edge normal vector to verify if a particle crosses 
an edge. On the other hand, CSR requires only the coordinates 
of the cell vertices and does not use these vectors. 

 C artesian Cell Registration (CCR) method

SCR and some other methods such as P2L have a drawback 
in that the cell numbers of the cells in which the particles are 
introduced must be known or given in advance. If the initial 
locations of particles are randomly given a nd all the cells are 
searched until the cells of the fi rst locations are found every 
time new particles are introduced (the brute-force method), 
the computational cost will be huge. 

To decrease the cost, Wang, et al. [11] proposed the BCP 
technique, as mentioned previously. Although their results 

showed a signifi cant decrease in the computational time 
for particle positioning, BCP is limited to structured grid 
systems. CCR also utilizes a Cartesian grid system, but it can 
be effectively and robustly applied to both structured and 
unstructured grid systems. Let us consider a grid system 
around a c ircular cylinder as the target grid system (shown in 
red in Figure 3) to be registered with a Cartesian grid system 
(shown in black in Figure 3). This target grid system may be 
structured, unstructured, or any polygonal structure other 
than a quadrangular structure. Moreover, the cell numbers are 
either sequential or arbitrary. 

Consider a square cell S0 on the Cartesian grid system with 
a cell width W, as shown in Figure 4. T he cell numbers of all 
the red cells on the target grid system that have centers within 
a distance R from the center of S0 are registered with S0. This 
registration process is performed for all Cartesian grid cells and 
target red cells. Some of the target red cells may be registered 
more than once with different Cartesian grid cells. However, it 
is highly important to adjust the parameters W and R so that no 
target red cells are left unregistered. The number of registered 
target cells can be zero or excessively large, depending on the 
parameters W and R as well as the cell sizes of the target grid 
system.

Figure 2: Particle trajectories passing through an edge (arrow), through a vertex 
(dotted arrow) and through a cell (dashed arrow).

Figure 3: Target grid system (red) and Cartesian grid system (black).
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The cell number of the Cartesian grid system in which a target 
particle exists can be computed from an algebraic expression 
by using the coordinates of the particle. Subsequently, the cell 
number of the target grid system in which this particle exists 
can be determined by searching only  t he target cells registered 
with Cartesian grid cells and then positioning the target particle 
through the AC method, which is described in Section 3.

The computational effi ciency of this method depends on 
tvhe average number of cells registered with the Cartesian 
grid cells. This aspect, along with the optimal values for the 
parameters W and R, will be discussed in Section 4.2.

A rea comparison method

Positioning of particles: While searching cells using the 
methods presented in Section 2, the cell in which the target 
particle exists must be determined. Here, we introduce t he 
Area Comparison (AC) method for this purpose. AC requires 
neither the anticlockwise ordering of the vertices as in [13] 
nor a vector describing the center position of each edge and 
the edge normal vectors as in [16]; rather, it requires only the 
coordinates of vertices of the cells. Moreover, the AC method 
is simple enough to adopt in three dimensions intuitively, 
although the application to three dimensions is not presented 
in this paper.

Consider a target particle P0 in a cell C0 at time t, as shown in 
Figure 2. When the time is updated to t + Δt with a suffi ciently 
small time step Δt, the particle moves to one of the surrounding 
cells or remains within C0. Note that the choice of Δt neglects 
the case where the particle moves through two or more cells. 
This case is examined in Section 3.2.

Let the area of the cell C1, one of the cells surrounding C0, 
be S. Further, as shown in Figure 5, let the area of the triangle 
given by the vertices V1 and V2 of C1 and the particle position 
P1 be S1, the area of  V2V 4 P1 be S2, t he area of  V3V4P1 be S3  
and the area of  V3V1P1 be S4. The area A of a triangle with the 
vertices (x1, y1), (x2, y2), and (x3, y3) is expressed as follows:

2 1 3 1 3 1 2 1

1
2
( )( ) ( )( )A x x y y x x y y     

. 

The existence of the particle in C1 can be verifi ed by the 
following simple if statement:

If S = S1 + S2 + S3 + S4, then the particle exists in the cell C1 
(Figure 5 (a)).

Moreover, if S = S1 + S2 + S3 + S4 and S1 = 0, then the particle 
is on the edge V1V2. Additionally, if S = S1 + S2 + S3 + S4, S1 = 0, and 
S2 = 0, then the particle is on the vertex V2. Finally, if S   S1 + 
S2 + S3 + S4, then the particle is outside C1 (Figure 5(b)). If this 
is the case, another registered surrounding cell is considered, 
and the above procedure is repeated until the occupied cell is 
confi rmed. It should be noted that a particle passing through 
a vertex (Figure 2, dotted arrow) or through a cell (Figure 
2, dashed arrow) can be treated in the same manner as a 
particle crossing cell edges (solid arrow) without any auxiliary 
calculation such as that considered in [14]. 

This method may be easily applied to three dimensions, in 
which case it is called the volume comparison method. In three 
dimensions, the volume of a cell is compared with the total 
volume of the polyhedrons generated with the cell vertices and 
the particle coordinates.

To illustrate the process to position a target particle and 
to identify the cell number of the target particle by using CCR 
or SCR with the AC method, a fl ow chart is shown in Figure 6.

Determina tion of the exit edge of the cell where a par-
ticle trajectory exits

In the case of simulations that require the residence time 
of a particle in each cell through which its trajectory crosses, 
it is necessary to determine the exit edge and the intersection 
point of the exit edge and trajectory. This is also true for the 
case where the particle moves by a distance greater than one 
cell length. 

Figure 7 illustrates the application of the AC method to 
determine the exit edge. In the fi gure, point A is the position 
of a particle at time t, and B is its position at time t + t. B 
is considered far from A. Therefore, the particle trajectory AB 
crosses more than one cell. CD is one of the edges of the cell 
containing the particle at time t.

Figure 4: Red cells in the blue circle are registered with  the black Cartesian grid 
cell S0.

(a)                                                             (b)
Figure 5: Area comparison method for positioning a particle. S is the area of the cell 
C1.  (a) – The particle is in C1 when S = S1 + S2 + S3 + S4.]  (b) - The particle is outside 
C1 when S   S1 + S2 + S3 + S4.
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T2L examines each edge together with anticlockwise-
ordered vertices through the fol lowing two conditions: 

1) Does the trajectory AB in F igure 7 lie to the left of the 
vertex C of a target edge CD?

2) Does the trajectory AB lie to the left of the vertex D of 
the edge CD? 

The exit edge is found only when the fi rst condition is false 
and the second is true. Reji, et al. [17], used the following two 
conditions:

1) Are the vertices C and D on opposite sides of the trajectory 
AB?

2) Are the points A and B on opposite sides of the edge CD?

The exit edge is found only when the both conditions are 
true.

In contrast to the above two sets of conditions, the AC 
method verifi es whether the particle trajectory AB and edge CD 
intersect through one simple condition:

1) Is ΔACD + Δ BCD = ΔCAB+ΔDAB ?

The particle trajectory AB and edge CD intersect (Figure 
7(a)) only when the above condition is true; thus, the exit edge 
can be found. Moreover, the intersection point can be obtained 
through simple geometric calculation.

Additionally, if ΔDAB = 0, for example, the particle 
trajectory AB passes through the cell vertex D and if  ΔACD + Δ 
BCD  ≠ ΔCAB+ΔDAB, the particle trajectory AB and edge CD do 
not intersect (Figure 7(b)).

By checking at most four edges of the cell, the exit edge 
or the vertex through which the particle trajectory passes can 
be determined. Subsequently, the surrounding cell that shares 
this edge or vertex is considered, and the above procedure is 
repeated until the cell containing the particle position B is 
found.

In this manner, all the exit edges as well as the intersection 
points of the edges and the trajectory can be found. This idea 
may be applied to three dimensions without much diffi culty.

Simulation Results and discussion

Comparison between area comparison method and 
particle to the left

In this section, the computational speeds are compared 
between the AC method and P2L using Fortran programs. 

Before comparison, P2L is briefl y explained. As shown in 
Figure 8, when the point P with the coordinates of the particle 
(xp, yp) lies on the left-hand side of the edge V1V2, the cross 
product W1 between the edge vector V1V2 and particle vector V1P 
given by 

1 2 1 1 2 1 1( )( ) ( )( )
p p

x x y y y y x x      
 

is positive [13]. In the above equation, (x1,y1) and (x2,y2) 
are the coordinates of the vertices V1 and V2, respectively. 
Therefore, if all the cross products Wi for all the edges of the 
cell are positive, then the particle is in that cell.

The basic parts of Fortran programs for the AC method and 
P2L are shown in Figure 9. In these programs, (x1, y1), (x2, 
y2), (x3, y3), and (x4, y4) are the coordinates of the vertices 
of a quadrangular cell, and (xp, yp) are the coordinates of the Figure 6: Flow chart for positioning a target particle and identifying its cell number 

using SCR/CCR with the AC method.

(a) (b)

Figure 7: AC method for determining the edge containing the exit 
trajectory.  (a) – [Particle trajectory AB and cell edge CD intersect when 
      ACD BCD CAB DAB .  (b) - Particle trajectory AB and cell edge CD do 
not intersect when       ACD BCD CAB DAB .
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target particles, which are pre-determined so that the particles 
are within the cell for simplicity. The actual numerical values 
of these coordinates are not shown in Figure 9. In addition, 
ip is the number of the particles found in the cell, and it is 
the number of iterations of the do loop, which is equal to the 
number of the particles to position.

It is important to note that, for P2L and the AC method, 
the parameters depending only on the geometry of the grid 
cell system, such as x1-x4 and 0.5*(x1-x4), are calculated in 

advance before positioning particles in order to minimize the 
computational time. Furthermore, for the AC method, the area 
S of the cells is additionally calculated in advance. Moreover, 
it is of interest to note that the programs for the AC method 
and P2L are quite similar. The differences between these 
programs are as follows: the AC method employs absolute-
value operators; moreover, P2L has four if statements, while 
AC method has only one. The if statement in the AC method 
contains subtractions, while the if statements in P2L have no 
arithmetic operations.

The operations of absolute value and subtractions in 
if statement may increase the computational time of the 
AC method, while four if statements may increase the 
computational time of P2L. The effects of these operations on 
the total computational times are examined as follows.

The complete Fortran programs are written in double 
precision, compiled using the commercial compiler PGI 19.10-
0 with an optimization level of 4, and executed on a computer 
with an Intel Core i7-4770K processor running at a clock speed 
of 3.50 GHz. Table 1 lists the computational times for the AC 
method and P2L for different values of it. It is observed that 
the AC method is almost 1.2 times faster than P2L. Further, Figure 8: P2L condition for positioning a particle.

!  parameters depen ding on gr id cells are 
calculated  in advance  before positioning 
particles  
 
x 14=x1 - x4  
x 21=x2 - x1  
x 32=x3 - x2  
x 43= x4 - x3  
y 14= y 1- y 4 
y 21= y 2- y 1 
y 32= y 3- y 2 
y 43= y 4- y 3 
 
! particle  number in c ell  
i p=0 
 
!  do l oop to position particles  by  P2L   
do i=1,it  
 
o1= x43 *(yp - y3) - y43* (xp - x3)  
o2= x14 *(yp - y4) - y14* (xp - x4)  
o3= x21 *(yp - y1) - y21* (xp - x1)  
o4= x32 *(yp - y2) - y32* (xp - x2)  
       
if(o1.gt.0.0 ) then  
 if(o2.gt.0.0 ) then  
   if(o3.gt.0.0 ) then  
     if(o4.gt.0.0 ) then  
        i p=i p+1  
     endif  
   endif  
 endif  
endif  
 
enddo  

!  parameters depen ding on gr id cells are 
calculated  in advance  before positioning 
particles  
 
x 14= 0.5*( x1 - x4 )  
x 21= 0.5*( x2 - x1 )  
x 32= 0.5*( x3 - x2 )  
x 43= 0.5*( x4 - x3 )  
y 14= 0.5*( y 1- y 4)  
y 21= 0.5*( y 2- y 1)  
y 32= 0.5*( y 3- y 2)  
y 43= 0.5*( y 4- y 3)  
 
! particle  number in c ell  
i p=0  
  
! do l oop to position particles  by ACM  
do i=1,it  
 
S1= a bs( x43 *(yp - y3) - y43* (xp - x3) )  
S2= abs( x14 *(yp - y4) - y14* (xp - x4) )  
S3= abs( x21 *(yp - y1) - y21* (xp - x1) )  
S4= abs( x32 *(yp - y2) - y32* (xp - x2) )  
 
if( S - S1 - S2 - S3 - S4 . eq . 0.0 ) then  
     i p=i p+1 
endif  
 
enddo  

Figure 9: Basic parts of Fortran programs for the (a) AC and (b) P2L methods.
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the programs are modifi ed for triangular cells instead of the 
quadrangular cells, which decrease s both the absolute-value 
operations in the AC method and the if statements in P2L. The 
results presented in Table 2 demonstrate that the AC method is 
almost 1.15 times faster than P2L.

Furthermore, through additional calculations, it is 
found that, in the case of quadrangular cell calculations, 
the absolute-value operations and the subtractions in the 
if statement, respectively, account for 14.47% and 31.35% of 
the computational time for the AC method. Further, the four 
if statements account for 90.23% of the computational time 
for P2L. Therefore, it can be concluded that P2L takes a longer 
computational time than the AC method owing to its use of 
multiple if statements.

In this paper, the computational t imes to determine the 
edge containing the exit trajectory are not compared between 
the AC method and T2L. However, the AC method is expected to 
be faster than T2L because of the same reasons. Moreover, the 
application of P2L and T2L to three dimensions will increase 
the number of if statements to a far greater extent than the AC 
method would.

Comparison of particle searching a nd positioning 
methods

In this section, computer simulations are conducted to 
investigate the speeds of searching and positioning particl es 
using the methods introduced in Sections 2 and 3.

1) To search cells, the following three methods are 
considerSCR method

2) CCR method

3) Brute-force method

To position particles, the AC method is used for all the three 
methods.

We set three objectives for the simulations in this section:

1) Compare the computational speeds for searching and 
positioning 

2) Study the characteristics of the parameters W and R 

3) Determine the optimal values for these parameters

To accomplish the above objectives as comprehensively 
as possible, the particles are assumed to move with a simple 
potential fl ow around a circular cylinder, as an application of 
the present methods, and additional physical phenomena such 
as particle collisions are not considered. This simple potential 
fl ow is enough to study computational speeds of the present 
methods.

The diameter of the circular cylinder is 2, and the 
computational region is divided into 50 segments in the radial 
direction and 100 segments in the circumferential direction. 
This creates a denser grid system, as shown in red in Figure 
10, than the red grid system in Figure 3. The smallest and 
largest areas of the red cells in Figure 10 are 0.00223 and 0.395, 
respectively. These two values are used later.

The computational procedure is as follows.

1) At time 0, 40 particles are equidistantly placed at the 
coordinates x = -6.95 and y = 0.01 + 0.04(i - 1) [i = 
1–40].

2) The cells in which the particles exist are searched using 
the three methods mentioned above and confi rmed 
using the AC method. As an exception, in the case of 
SCR, the cells of the initial positions of the particles are 
determined using the brute-force metho d.

3) For simplicity, as mentioned previously, the particles 
move with the velocities of the potential fl ow, u and v, 
which are given as follows:
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 

2 2

22 2

22 2

1

2

x y
u

x y
xy

v
x y


 
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where x and y are the coordinates of the particles. The time 
step Δt is set as 0.01, which is small enough to ensure that the 
distance of particle movement in one time step does not exceed 
one cell length.

4) The computation ends when all the particles reach x = 7.

First, the computational times of the brute-force method 
and SCR are measured as 0.9390 and 0.00405 s, respectively, 
demonstrating that the latter is 232 times faster. The times 
0.9390 and 0.00405 s are used as the basis for comparison. 
The time for registration is not included here, because the 
registration is performed only once in advance, as mentioned 
previously. Nevertheless, the time for registration is discussed 
later in this section. 

Figure 9 shows the trajectories of 10 out of the 40 particles. 
The trajectories create streamlines of a potential fl ow around 
a circular cylinder.

Table 1: Computational times of the AC and P2L  methods for quadrangular cells.

It AC (s) P2L (s) Ratio

8 109 24.06 28.89 1.20

6.4 1010 193.45 232.65 1.20

1 1012 3004.80 3613.50 1.20

AC: Area Comparison; P2L: Particle to the Left

Table 2: Computational times of the AC and P2L methods for triangular cells.

it AC (s) P2L (s) ratio

8 109 21.06 24.12 1.15

6.4 1010 168.21 192.10 1.14

1 1012 2669.52 3077.63 1.15

AC: Area Comparison; P2L: Particle to the Left
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Next, the computational time of CCR is investigated. Figure 
11 plots the computational time against the cell width W of the 
Cartesian grid system normalized by the cylinder diameter D for 
various values of the parameter k, which describes the radius as 
R = kW (see Figure 4). All the parameters are adjusted so that no 
red cells in Figure 10 are left unregistered with Cartesian grid 
cells (not shown in Figure 10).

As shown in Figure 11, all the computational times of 
CCR (symbols at k = 2.0–42.0) lie between those for SCR and 
the brute-force method, demonstrating that SCR method 
is the fastest (0.00405 s) and the brute-force method is the 
slowest (0.939 s). The minimum width of the target red 

cells ( 0 0022 0 63 2 0 23/ ..  ) and the maximum width 

( 0 395 2 0 314. / .  ), where 0.00223 and 0.395 are, 

respectively, the smallest and largest areas of the target red 
cells, are indicated by vertical lines in Figure 11. All the Cartesian 
cell widths W/D adopted in this computation are smaller than 
0.314, and almost half of them are smaller than 0.0236. This 
result suggests that the Cartesian grid cells are smaller than all 
of the target red cells when W/D < 0.0236, some of the target 
red cells are smaller or larger than the Cartesian grid cells when 
W/D > 0.0236, and none of the C artesian grid cells are larger 
than the largest target red cell for all W/D values considered in 
this computation.

For example, when k and W/D are the largest (42.0 and 
0.1166, respectively), as indicated by an arrow labeled “(a)” 
in Figure 11, the computational time is the largest (0.8818 s) 
among th e results for k = 42.0. In this case, the radius R is also 
the largest (9.8); consequently, the average number of cells 
registered with each Cartesian grid cell is as large as 17662, 
because of which the search time is the largest. The Cartesian 
grid cells with which no cells are registered are excluded when 
calculating the average number of registered cells. All the 
target red cells are registered with the Cartesian grid cells, but 
this does not mean that all the Cartesian grid cells have cells 
registered with them. For  instance, the Cartesian grid cells in 
the circular cylinder have no registered cells. 

In contrast, when k = 42.0 and W/D is the smallest 
(0.001944), as indicated by the arrow labeled “(b)” in Figure 
11, the computational time decreases to 0.00495 s. The radius 
R is 0.163, and the average number of registered cells is 15.13. 
This number is much smaller than that of case (a) (17662), 
making this computational time the shortest among the results 
for k = 42.0. Moreover, the computational time converges to 
the minimum value as the width of the Cartesian grid cell 
decreases.

When k is the smallest (2.0) and W/D is the largest (0.1166), 
as indicated by the arrow labeled “(c)” in Figure 11, the 
computational time is 0.0161 s, which is much shorter than that 
of case (a). The radius R is 0.4666, and the average number 
of registered cells is 120.4, which is less than that of case (a). 
When k = 2.0 and W/D is the largest (0.05833), as indicated by 
the arrow labeled “(d)” in Figure 11, the computational time is 
0.00648 s. The radius R is 0.2333, and the average number of 
registered cells is as small as 30.66.

For all values of k, it is observed that the computational 
time converges to each minimum value as the width of the 
Cartesian grid cell deceases.

Considering that the computational time is strongly 
correlated with the average number of registered cells, the 
graph is redrawn with the average number of registered cells 
on the horizontal axis, as shown in Figure 12. The graph is 
also redrawn with R on the horizontal axis, as shown in Figure 
13. Exceeding expectations, all the data in Figures 12,13 are 
suffi ciently fi tted by a single curve. This indicates that the 
computational time depends only on the average number 
of registered cells or R but not on W. Further, the lowest 
computational time is 0.00470 s for R = 0.1619 and an average 
number of registered cells of 14.859, which are obtained when k 
= 11.1 and W = 0.0146 (W/D = 0.0073). This proves that the width 
of the Cartesian grid cell has optimum values of W/D = 0.0073 
and R = 0.1619, which are neither the largest (W/D = 0.1166) nor 
the smallest (W/D = 0.00194) in Figure 11. Moreover, it seems 
that the computational time of the surrounding cell registration 
method converges to 0.00405 s as the radius R decreases.

In Figure 14, a graph of the m inimum computational time 
for each k in Figure 11 is drawn as a function of the average 
number of registered cells. The minimum computational 
time  is observed to be proportional to the average number of 
registered cells. Therefore, if the average number of registered 
cells can be set to 9, the computation time would be the 
smallest (0.00405 s); this result is given by surrounding cell 
registration method, which has 9 registered cells including the 
central cell (Figure 1). However, it is quite diffi cult to adjust the 
parameters to decrease the average number of registered cells 
without having red cells unregistered in the target grid system 
considered in this paper. In future work, this may be possible 
if the parameter R is adjusted according to the density of cells.Figure 10: Trajectories of 10 out of 40 particles.

Figure 11: Computational time of the three methods for searching cells.
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Table 3 summarizes the lowest computational time for each 
method. SCR shows the best performance and is 232 times faster 
than the brute-force method. Furthermore, the performance 
of CCR increases as the average number of registered cells 
decreases. Consequently, at the optimal values of k = 11.1 and 
W/D = 0.0073, CCR method is 200 times faster than the brute-
force method. Note that the optimal parameter values depend 
on the target grid system.

Because the cell registration is performed only once, 
unless the grid system is changed, the computational 
time of registration does not affect the time for searching 
and positioning, namely, for DSMC and multi-phase fl ow 
calculations. Even so, the registration time should not be 
prohibitively large. Figure 15 shows the registration time of 
CCR (fi lled circles) as a function of the normalized cell width 
W/D and that of SCR (horizontal line, 17.16 s). The registration 
time is observed to be inversely proportional to the square of 
W/D.

Although a smaller W results in a lower computational 
time, the registration time increases prohibitively. However, as 
mentioned previously, the best computational time is obtained 
when W = 0.0146 (k = 11.1, W/D = 0.0073), which is neither 
the largest (k = 2.0, W/D = 0.1166) nor the smallest (k = 42, 
W/D = 0.00194). The registration time of 24.763 s at k = 11.1 
is quite moderate. Moreover, it is of interest to note that the 
registration time of 24.763 s is the closest among all data to the 
registration time of SCR (17.16 s), and the average number of 
registered cells at k = 11.1 (14.859) is also the closest among all 
data to that of SCR (9).

Conclusion and future work 

This paper presented effective computational methods 
for particle searching and positioning that are applicable to 
structured and unstructured grid systems. SCR and CCR were 
introduced to limit the cells to search. In the former method, 
the cell numbers of the cells surrounding the central cell are 
registered with the central cell in advance to limit the cells to 
search later. In the latter method, the cell numbers of all the 
target cells on the target grid system having centers within an 
appropriate distance from the center of the Cartesian grid cell 

Figure 12: Computational time as a function of the average number of registered 
cells.

Figure 13: Computational time as a function of R.

Figure 14: Minimum computational time as a function of the average number of 
registered cells.

Table 3:  Lowest computational time for each method.

Method k W/D
Average number of 

registered cells
Computational 

time (s)
Ratio

Searching all 
cells

0.9390 1

SCR 9 0.00405 232

CCR 2.0 0.058 30.659 0.00648 145

CCR 3.2 0.029 19.706 0.00525 179

Cartesian cell 
CCR

11.1 0.0073 14.859 0.00470 200

SCR: Surrounding Cell Registration; CCR: Cartesian Cell Registration

Figure 15: Registration time of the SCR and CCR methods.
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are registered with the Cartesian grid cell. By tracking particles 
moving with a potential fl ow around a circular cylinder, as an 
application of the proposed methods, SCR was demonstrated 
to be 232 times faster than the method of brute-force. 
Furthermore, CCR was demonstrated to be 200 times faster 
with the appropriate parameters. This simple potential fl ow is 
enough to study computational speeds of the present methods.

The AC method was introduced to position a target particle 
and to fi nd the exit edge. It was demonstrated that the AC 
method can position particles 1.15-1.2 times faster than P2L 
positioning because the latter has multiple if statements while 
the former has only one. Moreover, AC method needs neither 
anticlockwise-ordered vertices of cells nor a vector describing 
the center position of each edge and edge normal vectors; 
rather, it requires only the coordinates of the vertices of cells.

The concepts of SCR, CCR, and the AC method are simple 
enough to apply to three-dimensional grids. In the future, we 
will fi rst adjust the parameter R according to the density of 
cells to minimize the computational time for CCR. Secondly, 
we will perform DSMC and multi-phase fl ow calculations with 
unstructured grid systems using SCR, CCR, and the AC method. 
Thirdly, we will apply these three methods to three dimensions. 
Lastly, our methods must be applied to the recent study on 
the static detection of particle positions [18]. It is important 
to note that the particle size considered in our simulations 
was infi nitesimal. Therefore, an appropriate mesh size will be 
required to analyze real experimental data of particles of fi nite 
sizes.
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