
007

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Abbreviations

DSMC: Direct Simulation Monte Carlo; SCR: Surrounding
Cell Registration; CCR: Cartesian Cell Registration; BCP:
Background Cartesian Grid Position; AC: Area Comparison

Introduction

Particle searching and positioning are the major time-
consuming processes in the Direct Simulation Monte Carlo
(DSMC) method [1,2] and multi-phase fl ow calculations [3-5].
When the Cartesian grid system is used, particle searching and
positioning are quite easy because the identifi cation number
given to the cell occupied by a target particle can be computed
from an algebraic expression. However, in the Cartesian
grid system, the fl ow over complex geometries is diffi cult
to describe and such descriptions are inaccurate, limiting
the engineering applicability of the Cartesian grid system.
On the other hand, the structured grid system can simulate
complex geometries with a better quality of body fi tting and
better accuracy of object boundary calculation as compared to
the Cartesian grid system [6]. Moreover, the quality of body

fi tting for complex geometries is even better with unstructured
grid systems such as those used in industrial applications [7-
9]. However, structured and unstructured grid systems for
complex geometries necessitate the time-consuming process
of searching a huge number of cells to position target particles.

By taking advantage of the Cartesian grid system to
effi ciently search cells, Liang, et al. [10] proposed a DSMC
method that combines two levels of Cartesian grid systems
with an unstructured triangular grid system. However,
as pointed out by Wang, et al. [11], although this method
improved the calculation effi ciency, several calculations
must be performed separately at the junction of two types of
grids, which is relatively tedious. Chuncai, et al. [12] divided
the computational domain into various rectangular regions
of Cartesian grid systems with a small number of triangular
elements. The particle trajectory is tracked by searching the
rectangular regions fi rst and then the triangular elements. This
method also improved calculation effi ciency. However, the grid
cell system is limited to a triangular grid system, and searching
grids in small areas can still be time-consuming.

Abstract

In the direct simulation Monte Carlo method and multi-phase fl ow calculations, structured and unstructured grid systems for complex geometries necessitate the
time-consuming process of searching a large number of cells to position target particles. This paper proposes effective computational methods for particle searching and
positioning that are applicable to structured and unstructured grid systems. Firstly, two methods are introduced to limit the cells to search: the surrounding cell registration
method and the Cartesian cell registration method. In the case of two-dimensional potential fl ow around a circular cylinder, as an application of the proposed methods, it
is demonstrated that the surrounding cell registration method is 232 times faster than the method of searching all the cells until the cells occupied by the target particles
are found, whereas the Cartesian cell registration method is 200 times faster with the appropriate parameters. Secondly, a method called the area comparison method is
introduced to position a target particle and fi nd the exit edge of the cell at which a trajectory of the particle exits. It is demonstrated that the area comparison method can
position particles 1.15–1.2 times faster than particle-to-the-left positioning because the latter is implemented with multiple if-statements, while the former has only one.

Proceedings

Fast algorithms for particle
searching and positioning
by cell registration and area
comparison
Yoshifumi Ogami*
Department of Mechanical Engineering, Ritsumeikan University, Japan

Received: 23 February, 2021
Accepted: 04 March, 2021
Published: 05 March, 2021

*Corresponding author: Yoshifumi Ogami, Department
of Mechanical Engineering, Ritsumeikan University,
525-8577, 1-1-1 Noji-Higashi, Kusatsu, Shiga, Japan,
Tel: +81-77-561-8577; Email:

Keywords: DSMC; Particle searching; Particle
positioning; Cell registration; Area comparison

https://www.peertechzpublications.com

008

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

Wang, et al. [11], also proposed the background Cartesian grid
position (BCP) technique for two-dimensional computations.
In this technique, a structured grid system is superposed on a
layer of a background Cartesian grid system, and the geometric
relationship between the structured and background grids
is established in advance to limit the cells to search later.
Although their results showed a signifi cant decrease in the
computational time required for particle positioning , BCP is
limited to structured grid systems. Furthermore, applying BCP
to three-dimensional grids may be somewhat diffi cult.

First, to overcome the above limitations, two methods
are herein introduced to limit the cells to search only for
positioning a target particle in a structured or unstructured
grid system are introduced. The fi rst is called the Surrounding
Cell Registration (SCR) method and is described in Section 2.1.
In this method, the cell numbers of the cells surrounding the
central cell are registered with the central cell in advance to
limit the cells to be searched later. It is demonstrated that a
 program with this method runs faster than those with other
methods because SCR has the least number of cells to search
among the studied methods. However, it should be noted that
SCR and the other methods mentioned later have a drawback
in that the cell numbers of the cells in which the particles are
introduced must be known or given in advance. This drawback
is overcome by the second method, which is called the Cartesian
Cell Registration (CCR) method and is described in Section 2.2.
CCR uses a Cartesian grid as a background two-dimensional
grid system, as in the method proposed by Wang, et al. [11], but
in a completely different manner; our method can be applied to
both structured and unstructured grids.

Section 4.2 compares the performance of SCR and CCR
with that of the method of searching all the cells until the
cells occupied by the target particles are found (the brute-
force method). For two-dimensional potential fl ow around a
circular cylinder, as an application of the proposed methods,
it is shown that computational programs with both methods
are almost 200 times faster than a program with the brute-
force approach. Moreover, the concepts of SCR and CCR are
simple enough to apply to three-dimensional grid systems
quite easily. In this paper, the present methods are not applied
to DSMC but to a simple potential fl ow. However, this fl ow is
enough to study computational speeds of the present methods.

While searching cells using the proposed methods, the
cell in which the target particle exists must be determined;
in other words, the target particle must be positioned. Wang,
et al. [11] explains this point as follows. “A widely used particle
positioning algorithm has been proposed by R. Chorda (RC) method
[13]. The core of RC positioning method is to fi nd the grid intersecting
with particle motion trajectory through searching, and then make
specifi c mathematical judgment on these grids one by one, to fi nd
the grid where the particle is fi nally located. Particle to the left (P2L)
and Trajectory to the left (T2L) are the two important mathematical
criteria used in RC method [sic].” In short, P2L fi nds the cell
occupied by the target particle, while T2L detects the exit
edge of the cell at which a trajectory of the particle exits. P2L
was fi rst introduced by Zhou, et al. [14], following which this
method was improved and applied to various geometries by

many researchers [13,15,16]. Instead of T2L, Reji, et al. [17]
presented a method based on geometric calculation. However,
it must be pointed out that, in P2L and T2L, the vertices of
each cell must be ordered anticlockwise, which makes them
somewhat complicated to apply to three dimensions. Moreover,
the computer program must evaluate if statements as many
times as the number of edges for each target cell to position
a target particle. This increases the computational time, as
demonstrated in Section 4.1. Moreover, the application of
P2L and T2L to three dimensions increases the number of if
statements.

Second, to overcome the above shortcoming, a simple
and easy-to-apply method called the Area Comparison (AC)
method is introduced. The AC method is used to fi nd the cell
occupied by a target particle or to position the target particle
in Section 3.1 and to detect the exit edge in Section 3.2. Both
these tasks can be performed by comparing areas only once;
in other words, a computer program with this method requires
only one if statement per target cell or edge. Further, in the
AC method, the vertices of a cell are not necessarily ordered
anticlockwise; rather, they may be randomly ordered. As
demonstrated in Section 4.1, a computer program with the AC
method runs 1.15–1.2 times faster than P2L. Moreover, the AC
method may be applied intuitively to three-dimensional grids
by comparing volumes, in which case the method is called the
volume comparison method.

Limiting the cells to search

Surrounding Cell Registration (SCR) method: Figure 1
shows a portion of the quadrangular grid system considered
here. The grid system may be structured or unstructured, and
it may have any polygonal structure other than a quadrangular
structure. In addition, the cells may be numbered sequentially
or arbitrarily. In Figure 1, the cell C0 is the central cell. The cell
numbers of the eight cells C1–C8 surrounding the central cell C0
are registered with C0. I n a computer program, the array CN for
the central cell C0 has the following elements, in which C0 is
the cell number of the cell C0:

CN[C0, 1] = the cell number of C1 (10, for example).

CN[C0, 2] = the cell number of C2 (13, for example).
 .
 .

CN[C0, 8] = the cell number of C8 (1111, for example).

Figure 1: Central cell C0 and surrounding cells C1–C8 of a quadrangular grid system.

009

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

Each cell in the quadrangular grid system shown in Figure
1 has eight surrounding cells, except for cells at the boundary.
For example, the cells on the surface of a circular cylinder have
only fi ve surrounding cells. The number of surrounding cells
varies with the type of grid system. In a computer program,
a surrounding cell is chosen if it shares at least one of its
vertices (not edges) with the central cell. With this criterion,
the cells that share edges as well as vertices with the central
cell are chosen. Moreover, this registration method enables
the treatment of cases in which the particle trajectory passes
through a vertex (Figure 2, dotted arrow) or through a cell
(dashed arrow) without any auxiliary calculation such as that
performed in [14].

After the registration of the all the eight surrounding cells
with the central cell C0, let the next cell C1 be the central cell.
Now, the cell numbers of the eight cells surrounding C1 are
registered with C1 as follows:

CN[C1, 1] = the cell number of C2 (13, for example).

CN[C1, 2] = the cell number of C3 (40, for example).
 .
 .

CN[C1, 8] = the cell number of C8 (1111, for example).

Some of the cells for the above registration are not shown
in Figure 1.

This registration process is repeated for all cells, and the
registration is performed only once. By using these registration
data, computationally expensive cell searching can be avoided
because the number of the target cells to search is at most nine
(the central cell and eight surrounding cells) for each target
particle to be positioned. The computational effi ciency of the
surrounding cell registration method is described in Section
4.2.

The concept of SCR is similar to that of “mesh connectivity”
proposed by Macpherson, et al. [16], which refers to the sharing
of the same faces by cells. In their paper [16], they treated a
particle passing through a cell (dashed arrow in Figure 2) in
a few steps, while SCR requires only one step, even when the
particle passes through a vertex (dotted arrow in Figure 2), as
explained in Section 3. Furthermore, their method needs to
store a vector describing the center position of each edge as
well as each edge normal vector to verify if a particle crosses
an edge. On the other hand, CSR requires only the coordinates
of the cell vertices and does not use these vectors.

 C artesian Cell Registration (CCR) method

SCR and some other methods such as P2L have a drawback
in that the cell numbers of the cells in which the particles are
introduced must be known or given in advance. If the initial
locations of particles are randomly given a nd all the cells are
searched until the cells of the fi rst locations are found every
time new particles are introduced (the brute-force method),
the computational cost will be huge.

To decrease the cost, Wang, et al. [11] proposed the BCP
technique, as mentioned previously. Although their results

showed a signifi cant decrease in the computational time
for particle positioning, BCP is limited to structured grid
systems. CCR also utilizes a Cartesian grid system, but it can
be effectively and robustly applied to both structured and
unstructured grid systems. Let us consider a grid system
around a c ircular cylinder as the target grid system (shown in
red in Figure 3) to be registered with a Cartesian grid system
(shown in black in Figure 3). This target grid system may be
structured, unstructured, or any polygonal structure other
than a quadrangular structure. Moreover, the cell numbers are
either sequential or arbitrary.

Consider a square cell S0 on the Cartesian grid system with
a cell width W, as shown in Figure 4. T he cell numbers of all
the red cells on the target grid system that have centers within
a distance R from the center of S0 are registered with S0. This
registration process is performed for all Cartesian grid cells and
target red cells. Some of the target red cells may be registered
more than once with different Cartesian grid cells. However, it
is highly important to adjust the parameters W and R so that no
target red cells are left unregistered. The number of registered
target cells can be zero or excessively large, depending on the
parameters W and R as well as the cell sizes of the target grid
system.

Figure 2: Particle trajectories passing through an edge (arrow), through a vertex
(dotted arrow) and through a cell (dashed arrow).

Figure 3: Target grid system (red) and Cartesian grid system (black).

010

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

The cell number of the Cartesian grid system in which a target
particle exists can be computed from an algebraic expression
by using the coordinates of the particle. Subsequently, the cell
number of the target grid system in which this particle exists
can be determined by searching only t he target cells registered
with Cartesian grid cells and then positioning the target particle
through the AC method, which is described in Section 3.

The computational effi ciency of this method depends on
tvhe average number of cells registered with the Cartesian
grid cells. This aspect, along with the optimal values for the
parameters W and R, will be discussed in Section 4.2.

A rea comparison method

Positioning of particles: While searching cells using the
methods presented in Section 2, the cell in which the target
particle exists must be determined. Here, we introduce t he
Area Comparison (AC) method for this purpose. AC requires
neither the anticlockwise ordering of the vertices as in [13]
nor a vector describing the center position of each edge and
the edge normal vectors as in [16]; rather, it requires only the
coordinates of vertices of the cells. Moreover, the AC method
is simple enough to adopt in three dimensions intuitively,
although the application to three dimensions is not presented
in this paper.

Consider a target particle P0 in a cell C0 at time t, as shown in
Figure 2. When the time is updated to t + Δt with a suffi ciently
small time step Δt, the particle moves to one of the surrounding
cells or remains within C0. Note that the choice of Δt neglects
the case where the particle moves through two or more cells.
This case is examined in Section 3.2.

Let the area of the cell C1, one of the cells surrounding C0,
be S. Further, as shown in Figure 5, let the area of the triangle
given by the vertices V1 and V2 of C1 and the particle position
P1 be S1, the area of  V2V 4 P1 be S2, t he area of  V3V4P1 be S3
and the area of  V3V1P1 be S4. The area A of a triangle with the
vertices (x1, y1), (x2, y2), and (x3, y3) is expressed as follows:

2 1 3 1 3 1 2 1

1
2
()() ()()A x x y y x x y y     

.

The existence of the particle in C1 can be verifi ed by the
following simple if statement:

If S = S1 + S2 + S3 + S4, then the particle exists in the cell C1
(Figure 5 (a)).

Moreover, if S = S1 + S2 + S3 + S4 and S1 = 0, then the particle
is on the edge V1V2. Additionally, if S = S1 + S2 + S3 + S4, S1 = 0, and
S2 = 0, then the particle is on the vertex V2. Finally, if S  S1 +
S2 + S3 + S4, then the particle is outside C1 (Figure 5(b)). If this
is the case, another registered surrounding cell is considered,
and the above procedure is repeated until the occupied cell is
confi rmed. It should be noted that a particle passing through
a vertex (Figure 2, dotted arrow) or through a cell (Figure
2, dashed arrow) can be treated in the same manner as a
particle crossing cell edges (solid arrow) without any auxiliary
calculation such as that considered in [14].

This method may be easily applied to three dimensions, in
which case it is called the volume comparison method. In three
dimensions, the volume of a cell is compared with the total
volume of the polyhedrons generated with the cell vertices and
the particle coordinates.

To illustrate the process to position a target particle and
to identify the cell number of the target particle by using CCR
or SCR with the AC method, a fl ow chart is shown in Figure 6.

Determina tion of the exit edge of the cell where a par-
ticle trajectory exits

In the case of simulations that require the residence time
of a particle in each cell through which its trajectory crosses,
it is necessary to determine the exit edge and the intersection
point of the exit edge and trajectory. This is also true for the
case where the particle moves by a distance greater than one
cell length.

Figure 7 illustrates the application of the AC method to
determine the exit edge. In the fi gure, point A is the position
of a particle at time t, and B is its position at time t + t. B
is considered far from A. Therefore, the particle trajectory AB
crosses more than one cell. CD is one of the edges of the cell
containing the particle at time t.

Figure 4: Red cells in the blue circle are registered with the black Cartesian grid
cell S0.

(a) (b)
Figure 5: Area comparison method for positioning a particle. S is the area of the cell
C1. (a) – The particle is in C1 when S = S1 + S2 + S3 + S4.] (b) - The particle is outside
C1 when S  S1 + S2 + S3 + S4.

011

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

T2L examines each edge together with anticlockwise-
ordered vertices through the fol lowing two conditions:

1) Does the trajectory AB in F igure 7 lie to the left of the
vertex C of a target edge CD?

2) Does the trajectory AB lie to the left of the vertex D of
the edge CD?

The exit edge is found only when the fi rst condition is false
and the second is true. Reji, et al. [17], used the following two
conditions:

1) Are the vertices C and D on opposite sides of the trajectory
AB?

2) Are the points A and B on opposite sides of the edge CD?

The exit edge is found only when the both conditions are
true.

In contrast to the above two sets of conditions, the AC
method verifi es whether the particle trajectory AB and edge CD
intersect through one simple condition:

1) Is ΔACD + Δ BCD = ΔCAB+ΔDAB ?

The particle trajectory AB and edge CD intersect (Figure
7(a)) only when the above condition is true; thus, the exit edge
can be found. Moreover, the intersection point can be obtained
through simple geometric calculation.

Additionally, if ΔDAB = 0, for example, the particle
trajectory AB passes through the cell vertex D and if ΔACD + Δ
BCD ≠ ΔCAB+ΔDAB, the particle trajectory AB and edge CD do
not intersect (Figure 7(b)).

By checking at most four edges of the cell, the exit edge
or the vertex through which the particle trajectory passes can
be determined. Subsequently, the surrounding cell that shares
this edge or vertex is considered, and the above procedure is
repeated until the cell containing the particle position B is
found.

In this manner, all the exit edges as well as the intersection
points of the edges and the trajectory can be found. This idea
may be applied to three dimensions without much diffi culty.

Simulation Results and discussion

Comparison between area comparison method and
particle to the left

In this section, the computational speeds are compared
between the AC method and P2L using Fortran programs.

Before comparison, P2L is briefl y explained. As shown in
Figure 8, when the point P with the coordinates of the particle
(xp, yp) lies on the left-hand side of the edge V1V2, the cross
product W1 between the edge vector V1V2 and particle vector V1P
given by

1 2 1 1 2 1 1()() ()()
p p

x x y y y y x x      

is positive [13]. In the above equation, (x1,y1) and (x2,y2)
are the coordinates of the vertices V1 and V2, respectively.
Therefore, if all the cross products Wi for all the edges of the
cell are positive, then the particle is in that cell.

The basic parts of Fortran programs for the AC method and
P2L are shown in Figure 9. In these programs, (x1, y1), (x2,
y2), (x3, y3), and (x4, y4) are the coordinates of the vertices
of a quadrangular cell, and (xp, yp) are the coordinates of the Figure 6: Flow chart for positioning a target particle and identifying its cell number

using SCR/CCR with the AC method.

(a) (b)

Figure 7: AC method for determining the edge containing the exit
trajectory. (a) – [Particle trajectory AB and cell edge CD intersect when
      ACD BCD CAB DAB . (b) - Particle trajectory AB and cell edge CD do
not intersect when       ACD BCD CAB DAB .

012

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

target particles, which are pre-determined so that the particles
are within the cell for simplicity. The actual numerical values
of these coordinates are not shown in Figure 9. In addition,
ip is the number of the particles found in the cell, and it is
the number of iterations of the do loop, which is equal to the
number of the particles to position.

It is important to note that, for P2L and the AC method,
the parameters depending only on the geometry of the grid
cell system, such as x1-x4 and 0.5*(x1-x4), are calculated in

advance before positioning particles in order to minimize the
computational time. Furthermore, for the AC method, the area
S of the cells is additionally calculated in advance. Moreover,
it is of interest to note that the programs for the AC method
and P2L are quite similar. The differences between these
programs are as follows: the AC method employs absolute-
value operators; moreover, P2L has four if statements, while
AC method has only one. The if statement in the AC method
contains subtractions, while the if statements in P2L have no
arithmetic operations.

The operations of absolute value and subtractions in
if statement may increase the computational time of the
AC method, while four if statements may increase the
computational time of P2L. The effects of these operations on
the total computational times are examined as follows.

The complete Fortran programs are written in double
precision, compiled using the commercial compiler PGI 19.10-
0 with an optimization level of 4, and executed on a computer
with an Intel Core i7-4770K processor running at a clock speed
of 3.50 GHz. Table 1 lists the computational times for the AC
method and P2L for different values of it. It is observed that
the AC method is almost 1.2 times faster than P2L. Further, Figure 8: P2L condition for positioning a particle.

! parameters depen ding on gr id cells are
calculated in advance before positioning
particles

x 14=x1 - x4
x 21=x2 - x1
x 32=x3 - x2
x 43= x4 - x3
y 14= y 1- y 4
y 21= y 2- y 1
y 32= y 3- y 2
y 43= y 4- y 3

! particle number in c ell
i p=0

! do l oop to position particles by P2L
do i=1,it

o1= x43 *(yp - y3) - y43* (xp - x3)
o2= x14 *(yp - y4) - y14* (xp - x4)
o3= x21 *(yp - y1) - y21* (xp - x1)
o4= x32 *(yp - y2) - y32* (xp - x2)

if(o1.gt.0.0) then
 if(o2.gt.0.0) then
 if(o3.gt.0.0) then
 if(o4.gt.0.0) then
 i p=i p+1
 endif
 endif
 endif
endif

enddo

! parameters depen ding on gr id cells are
calculated in advance before positioning
particles

x 14= 0.5*(x1 - x4)
x 21= 0.5*(x2 - x1)
x 32= 0.5*(x3 - x2)
x 43= 0.5*(x4 - x3)
y 14= 0.5*(y 1- y 4)
y 21= 0.5*(y 2- y 1)
y 32= 0.5*(y 3- y 2)
y 43= 0.5*(y 4- y 3)

! particle number in c ell
i p=0

! do l oop to position particles by ACM
do i=1,it

S1= a bs(x43 *(yp - y3) - y43* (xp - x3))
S2= abs(x14 *(yp - y4) - y14* (xp - x4))
S3= abs(x21 *(yp - y1) - y21* (xp - x1))
S4= abs(x32 *(yp - y2) - y32* (xp - x2))

if(S - S1 - S2 - S3 - S4 . eq . 0.0) then
 i p=i p+1
endif

enddo

Figure 9: Basic parts of Fortran programs for the (a) AC and (b) P2L methods.

013

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

the programs are modifi ed for triangular cells instead of the
quadrangular cells, which decrease s both the absolute-value
operations in the AC method and the if statements in P2L. The
results presented in Table 2 demonstrate that the AC method is
almost 1.15 times faster than P2L.

Furthermore, through additional calculations, it is
found that, in the case of quadrangular cell calculations,
the absolute-value operations and the subtractions in the
if statement, respectively, account for 14.47% and 31.35% of
the computational time for the AC method. Further, the four
if statements account for 90.23% of the computational time
for P2L. Therefore, it can be concluded that P2L takes a longer
computational time than the AC method owing to its use of
multiple if statements.

In this paper, the computational t imes to determine the
edge containing the exit trajectory are not compared between
the AC method and T2L. However, the AC method is expected to
be faster than T2L because of the same reasons. Moreover, the
application of P2L and T2L to three dimensions will increase
the number of if statements to a far greater extent than the AC
method would.

Comparison of particle searching a nd positioning
methods

In this section, computer simulations are conducted to
investigate the speeds of searching and positioning particl es
using the methods introduced in Sections 2 and 3.

1) To search cells, the following three methods are
considerSCR method

2) CCR method

3) Brute-force method

To position particles, the AC method is used for all the three
methods.

We set three objectives for the simulations in this section:

1) Compare the computational speeds for searching and
positioning

2) Study the characteristics of the parameters W and R

3) Determine the optimal values for these parameters

To accomplish the above objectives as comprehensively
as possible, the particles are assumed to move with a simple
potential fl ow around a circular cylinder, as an application of
the present methods, and additional physical phenomena such
as particle collisions are not considered. This simple potential
fl ow is enough to study computational speeds of the present
methods.

The diameter of the circular cylinder is 2, and the
computational region is divided into 50 segments in the radial
direction and 100 segments in the circumferential direction.
This creates a denser grid system, as shown in red in Figure
10, than the red grid system in Figure 3. The smallest and
largest areas of the red cells in Figure 10 are 0.00223 and 0.395,
respectively. These two values are used later.

The computational procedure is as follows.

1) At time 0, 40 particles are equidistantly placed at the
coordinates x = -6.95 and y = 0.01 + 0.04(i - 1) [i =
1–40].

2) The cells in which the particles exist are searched using
the three methods mentioned above and confi rmed
using the AC method. As an exception, in the case of
SCR, the cells of the initial positions of the particles are
determined using the brute-force metho d.

3) For simplicity, as mentioned previously, the particles
move with the velocities of the potential fl ow, u and v,
which are given as follows:

 

 

2 2

22 2

22 2

1

2

x y
u

x y
xy

v
x y


 



 


where x and y are the coordinates of the particles. The time
step Δt is set as 0.01, which is small enough to ensure that the
distance of particle movement in one time step does not exceed
one cell length.

4) The computation ends when all the particles reach x = 7.

First, the computational times of the brute-force method
and SCR are measured as 0.9390 and 0.00405 s, respectively,
demonstrating that the latter is 232 times faster. The times
0.9390 and 0.00405 s are used as the basis for comparison.
The time for registration is not included here, because the
registration is performed only once in advance, as mentioned
previously. Nevertheless, the time for registration is discussed
later in this section.

Figure 9 shows the trajectories of 10 out of the 40 particles.
The trajectories create streamlines of a potential fl ow around
a circular cylinder.

Table 1: Computational times of the AC and P2L methods for quadrangular cells.

It AC (s) P2L (s) Ratio

8 109 24.06 28.89 1.20

6.4 1010 193.45 232.65 1.20

1 1012 3004.80 3613.50 1.20

AC: Area Comparison; P2L: Particle to the Left

Table 2: Computational times of the AC and P2L methods for triangular cells.

it AC (s) P2L (s) ratio

8 109 21.06 24.12 1.15

6.4 1010 168.21 192.10 1.14

1 1012 2669.52 3077.63 1.15

AC: Area Comparison; P2L: Particle to the Left

014

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

Next, the computational time of CCR is investigated. Figure
11 plots the computational time against the cell width W of the
Cartesian grid system normalized by the cylinder diameter D for
various values of the parameter k, which describes the radius as
R = kW (see Figure 4). All the parameters are adjusted so that no
red cells in Figure 10 are left unregistered with Cartesian grid
cells (not shown in Figure 10).

As shown in Figure 11, all the computational times of
CCR (symbols at k = 2.0–42.0) lie between those for SCR and
the brute-force method, demonstrating that SCR method
is the fastest (0.00405 s) and the brute-force method is the
slowest (0.939 s). The minimum width of the target red

cells (0 0022 0 63 2 0 23/ .. ) and the maximum width

(0 395 2 0 314. / . ), where 0.00223 and 0.395 are,

respectively, the smallest and largest areas of the target red
cells, are indicated by vertical lines in Figure 11. All the Cartesian
cell widths W/D adopted in this computation are smaller than
0.314, and almost half of them are smaller than 0.0236. This
result suggests that the Cartesian grid cells are smaller than all
of the target red cells when W/D < 0.0236, some of the target
red cells are smaller or larger than the Cartesian grid cells when
W/D > 0.0236, and none of the C artesian grid cells are larger
than the largest target red cell for all W/D values considered in
this computation.

For example, when k and W/D are the largest (42.0 and
0.1166, respectively), as indicated by an arrow labeled “(a)”
in Figure 11, the computational time is the largest (0.8818 s)
among th e results for k = 42.0. In this case, the radius R is also
the largest (9.8); consequently, the average number of cells
registered with each Cartesian grid cell is as large as 17662,
because of which the search time is the largest. The Cartesian
grid cells with which no cells are registered are excluded when
calculating the average number of registered cells. All the
target red cells are registered with the Cartesian grid cells, but
this does not mean that all the Cartesian grid cells have cells
registered with them. For instance, the Cartesian grid cells in
the circular cylinder have no registered cells.

In contrast, when k = 42.0 and W/D is the smallest
(0.001944), as indicated by the arrow labeled “(b)” in Figure
11, the computational time decreases to 0.00495 s. The radius
R is 0.163, and the average number of registered cells is 15.13.
This number is much smaller than that of case (a) (17662),
making this computational time the shortest among the results
for k = 42.0. Moreover, the computational time converges to
the minimum value as the width of the Cartesian grid cell
decreases.

When k is the smallest (2.0) and W/D is the largest (0.1166),
as indicated by the arrow labeled “(c)” in Figure 11, the
computational time is 0.0161 s, which is much shorter than that
of case (a). The radius R is 0.4666, and the average number
of registered cells is 120.4, which is less than that of case (a).
When k = 2.0 and W/D is the largest (0.05833), as indicated by
the arrow labeled “(d)” in Figure 11, the computational time is
0.00648 s. The radius R is 0.2333, and the average number of
registered cells is as small as 30.66.

For all values of k, it is observed that the computational
time converges to each minimum value as the width of the
Cartesian grid cell deceases.

Considering that the computational time is strongly
correlated with the average number of registered cells, the
graph is redrawn with the average number of registered cells
on the horizontal axis, as shown in Figure 12. The graph is
also redrawn with R on the horizontal axis, as shown in Figure
13. Exceeding expectations, all the data in Figures 12,13 are
suffi ciently fi tted by a single curve. This indicates that the
computational time depends only on the average number
of registered cells or R but not on W. Further, the lowest
computational time is 0.00470 s for R = 0.1619 and an average
number of registered cells of 14.859, which are obtained when k
= 11.1 and W = 0.0146 (W/D = 0.0073). This proves that the width
of the Cartesian grid cell has optimum values of W/D = 0.0073
and R = 0.1619, which are neither the largest (W/D = 0.1166) nor
the smallest (W/D = 0.00194) in Figure 11. Moreover, it seems
that the computational time of the surrounding cell registration
method converges to 0.00405 s as the radius R decreases.

In Figure 14, a graph of the m inimum computational time
for each k in Figure 11 is drawn as a function of the average
number of registered cells. The minimum computational
time is observed to be proportional to the average number of
registered cells. Therefore, if the average number of registered
cells can be set to 9, the computation time would be the
smallest (0.00405 s); this result is given by surrounding cell
registration method, which has 9 registered cells including the
central cell (Figure 1). However, it is quite diffi cult to adjust the
parameters to decrease the average number of registered cells
without having red cells unregistered in the target grid system
considered in this paper. In future work, this may be possible
if the parameter R is adjusted according to the density of cells.Figure 10: Trajectories of 10 out of 40 particles.

Figure 11: Computational time of the three methods for searching cells.

015

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

Table 3 summarizes the lowest computational time for each
method. SCR shows the best performance and is 232 times faster
than the brute-force method. Furthermore, the performance
of CCR increases as the average number of registered cells
decreases. Consequently, at the optimal values of k = 11.1 and
W/D = 0.0073, CCR method is 200 times faster than the brute-
force method. Note that the optimal parameter values depend
on the target grid system.

Because the cell registration is performed only once,
unless the grid system is changed, the computational
time of registration does not affect the time for searching
and positioning, namely, for DSMC and multi-phase fl ow
calculations. Even so, the registration time should not be
prohibitively large. Figure 15 shows the registration time of
CCR (fi lled circles) as a function of the normalized cell width
W/D and that of SCR (horizontal line, 17.16 s). The registration
time is observed to be inversely proportional to the square of
W/D.

Although a smaller W results in a lower computational
time, the registration time increases prohibitively. However, as
mentioned previously, the best computational time is obtained
when W = 0.0146 (k = 11.1, W/D = 0.0073), which is neither
the largest (k = 2.0, W/D = 0.1166) nor the smallest (k = 42,
W/D = 0.00194). The registration time of 24.763 s at k = 11.1
is quite moderate. Moreover, it is of interest to note that the
registration time of 24.763 s is the closest among all data to the
registration time of SCR (17.16 s), and the average number of
registered cells at k = 11.1 (14.859) is also the closest among all
data to that of SCR (9).

Conclusion and future work

This paper presented effective computational methods
for particle searching and positioning that are applicable to
structured and unstructured grid systems. SCR and CCR were
introduced to limit the cells to search. In the former method,
the cell numbers of the cells surrounding the central cell are
registered with the central cell in advance to limit the cells to
search later. In the latter method, the cell numbers of all the
target cells on the target grid system having centers within an
appropriate distance from the center of the Cartesian grid cell

Figure 12: Computational time as a function of the average number of registered
cells.

Figure 13: Computational time as a function of R.

Figure 14: Minimum computational time as a function of the average number of
registered cells.

Table 3: Lowest computational time for each method.

Method k W/D
Average number of

registered cells
Computational

time (s)
Ratio

Searching all
cells

0.9390 1

SCR 9 0.00405 232

CCR 2.0 0.058 30.659 0.00648 145

CCR 3.2 0.029 19.706 0.00525 179

Cartesian cell
CCR

11.1 0.0073 14.859 0.00470 200

SCR: Surrounding Cell Registration; CCR: Cartesian Cell Registration

Figure 15: Registration time of the SCR and CCR methods.

016

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Ogami Y (2021) Fast algorithms for particle searching and positioning by cell registration and area comparison. Trends Comput Sci Inf Technol 6(1): 007-
016. DOI: https://dx.doi.org/10.17352/tcsit.000032

are registered with the Cartesian grid cell. By tracking particles
moving with a potential fl ow around a circular cylinder, as an
application of the proposed methods, SCR was demonstrated
to be 232 times faster than the method of brute-force.
Furthermore, CCR was demonstrated to be 200 times faster
with the appropriate parameters. This simple potential fl ow is
enough to study computational speeds of the present methods.

The AC method was introduced to position a target particle
and to fi nd the exit edge. It was demonstrated that the AC
method can position particles 1.15-1.2 times faster than P2L
positioning because the latter has multiple if statements while
the former has only one. Moreover, AC method needs neither
anticlockwise-ordered vertices of cells nor a vector describing
the center position of each edge and edge normal vectors;
rather, it requires only the coordinates of the vertices of cells.

The concepts of SCR, CCR, and the AC method are simple
enough to apply to three-dimensional grids. In the future, we
will fi rst adjust the parameter R according to the density of
cells to minimize the computational time for CCR. Secondly,
we will perform DSMC and multi-phase fl ow calculations with
unstructured grid systems using SCR, CCR, and the AC method.
Thirdly, we will apply these three methods to three dimensions.
Lastly, our methods must be applied to the recent study on
the static detection of particle positions [18]. It is important
to note that the particle size considered in our simulations
was infi nitesimal. Therefore, an appropriate mesh size will be
required to analyze real experimental data of particles of fi nite
sizes.

Acknowledgement

The author would like to thank Editage for English language
editing.

References

1. Bird GA (1970) Direct simulation and the Boltzmann equation. Phys Fluid 13:
2676-2681. Link: https://bit.ly/2OmxpaU

2. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows,
Clarendon Press, Oxford. Link: http://bit.ly/3bgselO

3. Shojaee S, Hosseini SH, Razavi BS (2012) Computational Fluid Dynamics
Simulation of Multiphase Flow in Structured Packings. Journal of Applied
Mathematics 2012: 1-17. Link: http://bit.ly/3uVEvUD

4. Florice NM, Andrei K (2019) Modelling and Simulation of Multiphase Flow
Applicable to Processes in Oil and Gas Industry. Chemical Product and
Process Modeling 20170066: 1-16.

5. Parsi M, Kara M, Agrawal M, Kesana N, Jatale A, et al. (2017) CFD simulation
of sand particle erosion under multiphase fl ow conditions. Wear 376-377:
1176-1184. Link: http://bit.ly/2OmxGKY

6. Blazek J (2015) Principles of Grid Generation. Computational Fluid
Dynamics: Principles and Applications (Third Edition) Chap 11: 357-393. Link:
http://bit.ly/388zDC0

7. Chen H, Onishi T, Park J, Datta-Gupta A (2021) Computing Pressure Front
Propagation Using the Diffusive-Time-of-Flight in Structured and Unstructured

Grid Systems via the Fast-Marching Method. SPE J 1-21: SPE-201771-PA.
Link: http://bit.ly/2MIxqpc

8. Lee J, Lee J, Yun SL, Kim SK (2020) Three-Dimensional Unstructured Grid
Finite-Volume Model for Coastal and Estuarine Circulation and Its Application.
Water 12: 1-29. Link: https://bit.ly/3uVF151

9. Hao D, Haiqing S, Huiying Z, Xiaozhu L (2019) Unstructured mesh generation
based on Parallel Virtual Machine in cyber-physical system. EURASIP
Journal on Wireless Communications and Networking 62: 1-11. Link:
http://bit.ly/3kIMuQk

10. Liang J, Yan C, Du BQ (2010) An algorithm study of three dimensional DSMC
simulation based on two-level Cartesian coordinates grid structure. Acta
Aerodyn Sin 28: 466-471. Link: https://bit.ly/3e79ZRP

11. Wang Z, Li L, Zhang B, Liu H (2019) BCP particle positioning techniques for
DSMC method.J Aeronaut Astronaut Aviat 51: 225-236.

12. Wang C, Cheng J, Ji L, Lu Y, Sun Y, et al. (2015) 2-D DSMC algorithm based
on Delaunay triangles. J Tsinghua Univ (Sci Technol) 55: 1079-1086. Link:
https://bit.ly/2OmzcwU

13. Chorda R, Blasco JA, Fueyo N (2002) An effi cient particle-locating algorithm
for application in arbitrary 2D and 3D grids. Int J Multiph Flow 28: 1565-1580.
Link: http://bit.ly/3beyPgX

14. Zhou Q, Leschziner MA (1999) An improved particle-locating algorithm for
Eulerian–Lagrangian computations of two-phase flows in general coordinates.
Int J Multiph Flow 25: 813-825. Link: http://bit.ly/3rfjpP3

15. Vaidya AM, Subbarao PMV, Gaur RR (2006) A novel and effi cient method for
particle locating and advancing over deforming, nonorthogonal mesh. Numer
Heat Transf, Part B: Fundam 49: 67-88. Link: https://bit.ly/3rjG0Kb

16. Macpherson GB, Nordin N, Weller HG (2009) Particle tracking in unstructured,
arbitrary polyhedral meshes for use in CFD and molecular dynamics. Commun
Numer Methods Eng 25: 263-273. Link: https://bit.ly/2PoJKMi

17. Reji RV, Lal SA (2017) A new direct simulation Monte Carlo implementation
for more effi cient simulation of hypersonic fl ow over arbitrarily shaped bodies
using dynamic cells. J Aerosp Eng 231: 82-97. Link: http://bit.ly/3rgCQXH

18. Thapa S, Lukut N, Selhuber-Unkel C, Cherstvy AG, Metzler R (2019) Transient
superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. J
Chem Phy 150: 144901-1-144901-18. Link: https://bit.ly/3sJVHe3

Copyright: © 2021 Ogami Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

