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Introduction

Simultaneous Localization and Mapping (SLAM) widely 
appear in computer vision, autonomous robotics, and remote 
sensing [1-3]. The SLAM system can be generally summarized 
as Laser SLAM (L-SLAM) and Visual SLAM (V-SLAM) [4]. Ref. 
[5] claims that the L-SLAM has higher accuracy but is more 
cumbersome and expensive. The V-SLAM has a lower cost 
and is more fl exible. Moreover, the V-SLAM is more similar 
to the human vision system, which has wider research and 
application prospects [5]. For example, Refs. [6-8] apply the 
V-SLAM into 3D environmental sensing, Refs. [9-11] work 
on the rover autonomy, and Refs. [12-14] addresses drone 
navigation. However, the process of V-SLAM is complicated 
and challenging. The V-SLAM applies the camera system as the 
input sensor, which attempts to recover the three-dimensional 

(3D) structure using two-dimensional (2D) images from the 
pinhole camera model [15]. The dimension reduction (3D to 2D) 
loses numerous information, while the V-SLAM system aims 
to approach the original 3D information through the multiple 
view geometry (MVG). 

The V-SALM can be understood as a special case of the 
MVG. The basic task of MVG is to estimate the relative motion 
between inter-frames, which corresponds to the localization 
part of V-SLAM. Then, the V-SLAM system connects with a 
mapping part to project the 2D pixels to the 3D coordinates. 
The V-SLAM is a real-time and dynamic process, which can 
be understood as an MVG corresponding with timestamps [3]. 
Localization is the main focus of this study, which can achieve 
the relative pose estimation between inter-frames, and the 
pose consists of position and orientation.
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This study proposes a modifi ed V-SLAM framework (OG-
SLAM), integrated with Oriented FAST and Rotated Brief (ORB) 
[16] feature and Grid-based Motion Statistics (GMS) algorithm. 
This study mainly contributes to these three aspects:

By integrating the motion smoothness into the V-SLAM 
system, the OG-SLAM framework has signifi cantly improved 
the accuracy without reducing the real-time performance.

The OG-SLAM framework improves the robustness of 
the rotation, loop-free, and long ground-truth length of the 
V-SLAM system. 

As the authors are aware, this study is the fi rst trial by 
integrating the ORB and GMS algorithms into the monocular 
V-SLAM system.

The study is organized as follows: Section 3 introduces the 
method and mathematical basis of the OG-SLAM framework. 
Section 4 discusses the dataset used in this study and the 
corresponding results. Finally, the conclusion is drawn in the 
end.

Related works

The inter-frame estimation in V-SLAM corresponds to 
the estimation of epi-polar geometry in MVG [17]. The overall 
V-SLAM refers to an incremental result from iterations of 
multiple epi-polar geometries. Thus, the estimation error 
in one inter-frame estimation iterates and accumulates to 
the following inter-frame estimation, which is called drift-
error (or drift). Drift is one of the main challenges for current 
V-SLAM in large scene reconstruction tasks [5]. There are two 
approaches for decreasing the drift, which is local optimization 
and global optimization.

The conventional solutions are global optimization, which 
corresponds to the optimization and loop-closing steps in the 
monocular SLAM system. Global optimization can be classifi ed 
as linear optimization (such as Kalman fi lter [18]), nonlinear 
optimization (such as extended Kalman fi lter [19]) and bundle 
adjustment (BA) [20]. However, the best performance comes 
from BA, which signifi cantly accelerates V-SLAM development 
[21]. Although BA signifi cantly decreases the drift error, the 
result still requires further improvements [5,22]. Loop-closure 
improves the V-SLAM performance by closing the camera 
trajectory and the reconstructed map, which signifi cantly 
improves the accuracy of the V-SLAM system [16]. However, 
in many cases, it is challenging to accomplish a closed-loop, 
for example, large-scale navigation and target tracking, which 
leads to high demand for the loop-free V-SLAM.

Another solution is to reduce the drift individually, named 
local optimization in this study. The local optimization focuses 
on each inter-frame camera pose estimation, a process of 
inter-frame information association. Some attempts use local 
optimization, for example, SIFT-SLAM [23] and NeroSLAM [6]. 
In computer vision, one method of inter-frame information 
association is feature matching. This study uses the GMS 
algorithm [24] based on motion smoothness to screen out the 
incorrect matches. Although the GMS algorithm has improved 

many studies [25-27], the visibility of GMS in V-SLAM has not 
been systematically discussed.

Ref. [5] claims that even if many efforts have been made 
(such as Ref. [28], Ref. [29], and Ref. [30], the drift is still a 
signifi cant challenge for the monocular V-SLAM system.

Method

The general structure of the proposed ORB-GMS-SLAM 
(OG-SLAM) framework is shown in Figure 1, where the overall 
process can be divided into three parts. The Data-end reads and 
prepares data, the Localization-end estimates the key-frame 
trajectory, and the Mapping-end conducts the mapping tasks.

Data-end

Data-end is a data input and preparation module. It is 
noteworthy that the closed loop is a correction mechanism 
that is only triggered when the camera returns to the same 
historical position. Thus, excessive dependence on closed-loop 
can signifi cantly limit the V-SLAM application. Therefore, the 
OG-SLAM system divides the input data into input frame data 
and closed-loop detection data and introduces two parallel 
data streams into the Localization-end. This framework design 
increases versatility and reduces closed-loop dependence.

Localization-end

The input frame data is then frame-by-frame passed to 
the Localization-end along the time stamps. Localization-
end consists of three modules, GMS-based visual odometer 
(G-VO), BA optimization, and closed-loop optimization. The 
G-VO estimates the relative motion (rotation and translation) 
between consecutive frame-pairs, which strongly impacts the 
result of the inter-frame information association. This problem 
corresponds to feature matching and epi-polar geometric 
constraints in the feature-based V-SLAM system. According to 
Ref. [29], GMS is a robust feature matching algorithm, which 
signifi cantly increases the robustness of feature matching 
without making the computation expensive [29]. Therefore, 
OG-SLAM uses the Fast Library for Approximate Nearest 
Neighbors (FLANN) algorithm [31] to generate matches, which 
are then fi ltered out false matches using GMS. 

More specifi cally, the G-VO fi rstly constructs an image 
pyramid, which is constructed with eight layers, and the 

Figure 1: The general structure of the OG-SLAM framework. VO represents a visual 
odometer. BA represents the bundle adjustment. G-VO is the major improved part 
of this study, which integrates the GMS feature matching algorithm as a local drift 
optimizer. The G-VO must further cooperate with the global drift optimizer, BA, and 
closed-loop optimizer.
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scaling factor is 1.2. Then, the G-VO extracts the potential 
ORB key points [32] using the Feature from Accelerated 
Segments Test (FAST) [33] algorithm on each layer. Ref. [29] 
recommend extracting 1000 ORB key points per frame when 
the resolutions are between 512×384 pixels and 752×480 pixels 
[29]. Considering the G-VO decreases the ORB key-point 
amount (OKA) by fi ltering out the false GMS matches, the OG-
SLAM can handle more features to involve more associated 
information. G-VO sets the OKA per frame by 1800. The details 
of choosing OKA are discussed in Section 4. For better use of 
the spatial information covered by the entire frame, G-VO 
uses the grid to divide the image into many sub-regions and 
extracts the equal OKA from each sub-region.

As shown in Figure 2, the p is the target pixel. The luminance 
of this pixel is LuminancePixel (LP), then only compares the 
luminance of LP with the four yellow pixels (1, 5, 9, and 13). 
The luminance (LPN) of NeighborPixel (PN) and a threshold 
ThresholdValue (TV) is set to improve the difference between p 
and pN. This pixel is considered to be a potential feature point 
when the LP values of p and LPN value of PN satisfy Equation (1) 
[32], where KPpotential represents the potential key point.

  _ ,
, 

   _ ,
,                                    .

if LP LP N TV
yes

KP or if LP LP N TVpotential
no else

 
 
 

  
    
 
 

            (1)

The Harris response values [34] of the potential ORB key 
points   are then calculated, and the fi rst 1800 key points   are 
taken as the ORB key points. Then, the ORB descriptor is 
generated with the orientation calculated using the Inte nsity 
Centroid algorithm [32].

Acc o rding to Ref. [29], the technology of extracting many 
key points has been implemented, but eliminating invalid 
matches is the current main challenge. Feature matching is 
actually a task of neighborhood similarity evaluation. GMS 
claims that the motion smoothness supports more matches in 
the neighborhood [29], which transfers the feature matching 
process to a statistic of the motion smoothness. The matches 
which are satisfi ed with the GM’s criterion are named GMS-
matches in this study.

The only relevant area of the GMS is the neighborhood. 
G-VO utilizes grids to segment the frame fi rst, then conducts 
the GMS on the neighbor grids. As shown in Figure 3, this 
process is named grid-GMS. The frame is segmented into 
many  20×20pixels in small cells. The size of the experimental 
images in this study is 640×480 pixels, so the entire image is 
divided into 32×24 (= 768) grids without overlapping. Thus, 
when the potential ORB feature points are 1800, the average 
key points (nave) is 2.34375 key points per grid. The G-VO also 
sets an amplifi cation factor,  = 6, to ensure enough margin for 
counting supported GMS matches (GMS-supporters). 

As shown in Figure 3, the grids i and j contain the target 
ORB match, mij represents the GMS-supporters amount within 
the nine neighboring grids (the yellow grids), thus the match-
score (sgridij) is calculated according to Equation (2). The 
criterion for the matching is Equation (3). In this study, the 

value of is 9.186. Thus, when the GMS-supporter amount is 
more signifi cant than eight, the matching is considered the 
GMS-match.

9 9 1 1Sgrid mij i ja b ab ab
                     (2)

,   Sgrid  · ,

,                              .

Ture if naveijGMS match
False else

      
  

                 (3)

The imp act of the GMS algorithm on inter-frame and key-
frame pose estimation has been discussed below. The only 
difference between inter-frame estimation and key-frame 
estimation is the implication of img1 and img2 in Figure 4, 
which has nothing related to the mathematical process.

In Euclidean space, the image plane and camera can be 
represented by a vector. Therefore, the direction represents 
the camera orientation, and the starting point represents the 
camera location. According to Ref. [35], the motion between two 

Figure 2: The ORB feature extraction process of the OG-SLAM framework. PN 
represents the neighbor pixel,  N corresponds to its index. OG-SLAM only calculates 
the illumination difference between p and the yellow pixels (N1, N1, N1, and N13). (a) 
represents a certain image from the dataset. (b) is the pixel layout around pixel p.

Figure 3: The grid-GMS feature matching is used in the G-VO. (b) and (c) are the two 
images for GMS feature matching, (a) and (c) are separately the neighbor grids of 
grid i and j.
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3D vectors can be represented by one rotation and translation 
[35]. Figure 4 shows an epi-polar constraint between images 
img1 and img2. p is a real point corresponding to the key points 
Kp1 and Kp2. X, Y, and Z are its 3D coordinates. K is the essential 
matrix, while R and t represent the rotation and translation. 
Equation (4) is the relationship between the pixel and the real 
point [3].

·              1
·( · )2

kp K P

kp K R P t

  
    

                 (4)

According to Ref. [15], the transformation between Kp1 and 
Kp2 can be deduced through Equation (5), (6), (7), (8), (9) [15], 
where Kp1 and  Kp2 is the homogeneous coordinate of Kp1 and 
Kp2, and u and v respectively represent its 2D coordinates. The 
fi rst digit in subscript corresponds to the index of the image, 
and the second digit corresponds to the different matches [15].

' · · 01 2 'kp F kp                  (5)

The 
'
1kp , 2

'kp  and F in Equation (5) is expanded to Equation 
(6):

11 12 13 2
 , ,1 · · 01 1 21 22 23 2

131 32 33

f f f u

u v f f f v

f f f

   
             
    

             (6)

Then, Equation (6) can be rephrased to the form of Equation 
(7):

   2 1 11 2 1 12 2 13 2 1 21
02 1 22 2 23 1 31 1 32 33        

 

u u f u v f u f v u f

v v f v f u f v f f

   

                   (7)

Equation (7) can be decomposed to the form of Equation (8) 
to further achieve vector f:

               1 · 02 1 2 1 2 2 1 2 1 2 1 1u u u v u v u v v v u v    f             (8)

Equation (9) is the expanded form of Equation (8):

· 0       
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u u
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  
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·
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 
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 
 
 
 
 

f

           (9)

It is obvious that a match as shown in Figure 4 can only 
provide one constraint. Therefore, Ref. [15] further introduces 
Equation (10) [15] as an additional constraint to calculate the 
F[15].

2 F                    (10)

Equation (11) converts F into a vector, f and Equation (12) 
proposes 'f  as the homogeneous form of f, which can achieve 
scale invariance.

                11 12 13 21 22 23 31 32 33
T f f f f f f f f f   f               (11)

  13 23 31 3211 12 21 22               1 
        33 33 33 33 33 33 33 33

'   '    '    '   '   '   '   ' 1 5 71 2 3 4 6 8

T f f f ff f f f

f f f f f f f f

f f f f f f f f

 
 
  
   

'f
             (12)

The unknown amount in f is 9. Equation (13) shows the 
unknown amount in 'f  is 8 (nmt), and it is noteworthy that a 
certain 'f  is correlated with a certain motion (R and t). 

' ' ' '     2 1 1 2 1 2 2 3 2 1 4
' ' ' ' 1 05 72 1 2 6 1 1 8

u u f u v f u f v u f

v v f v f u f v f

    
        

              (13)

Assuming there is a nine-dimensional (9D) coordinate 
system, which contains the f. Considering the scale invariance, 
f is a “straight line” that goes through the origin. Therefore, 
the projection from a “straight line” f to any f33-adjacent 2D 
coordinate plane is also a straight line that goes through the 
origin. Their respective slopes are the corresponding values   
in 'f , which can be found in Equation (12). However, the f 
estimated through different matches-pair is a group of 
splattering. This translates the motion estimation into solving 
the overdetermined Equations or linear regression in a high-
dimensional coordinate system. This study follows the same 
solution as the ORB-SLAM2 system.

It is noteworthy that, when the tracking key-points are less 
than 50 (nkft), the G-VO key-frame detection is triggered, thus 
the amount of matches available in any motion estimation is 
equal to or greater than 50. The condition with 50 key points 
is named extreme condition, the performance of which can 
represent its robustness to the scenario of large rotation, high 
illumination variation, heavy vibration, loop-free, and long 
ground-truth trajectory length (GTL). Equation (14) uses the 
fSet to contain all the f estimations, the Nf is calculated using 
Equation (15).

, , , , 1 2 3set setNset set set f

    
  

f f  f f f            (14)

 
!

! !

nn kftmtN Cnf kft n n nmt mtkft

 
 

             (15)

During the extreme condition, the ORB-SLAM2 system 

Figure 4: The epi-polar constrain illustration of G-VO.
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directly conducts the least-squares method to the fSet ; however, 
the matches used in OG-SLAM are the GMS matches. This 
study uses Equation (16) to defi ne a score, Scoremval, which 
quantifi es the value of matches for motion estimation in the 9D 
coordinate system. The  akd corresponds to the average key-
frame drift.

akdScoremval nkft
                   (16)

Because of the assumption of motion smoothness, the GMS-
matches should contain higher Scoremval, therefore OG-SLAM 
should provide more accurate motion estimation. All the above 
mathematic deductions are proved by experimental results in 
Section 4.

Mapping-end

The OG-SLAM is a monocular SLAM system. The theoretical 
support is triangulation. Depending on the specifi c V-SLAM 
application, various mapping approaches can be implemented 
as the Mapping-end. For example, block-matching can be 
used for dense 3D reconstruction [36], or sparse grid maps can 
be constructed from points and lines [37]. Considering that 
Mapping is not the focus of this study, thus the Mapping-end 
does not explore in very detail in this study.

Experiments and analysis

The experimental hardware is the ThinkStation PC 
workstation with Inter(R) Core(TM) i7-7700 CPU, 32 GB 
memory, and NVIDIA GTX1080 GPU. The platform is Ubuntu 
18.04 system.

Datasets and Absolute Trajectory Error

In this study, the four datasets from the RGB-D SLAM 
database [38] are selected for experiments. Table 1 shows the 
specifi c information of the four datasets. Where idx is the index 
of each dataset. D represents the dataset duration in-unit 
second (s). GTL represents the ground-truth trajectory length 
in unit meter (m). ATV represents the average translational 
velocity in unit meters per second (m/s). AAV represents the 
average angular velocity in unit degree per second (deg/s). 
SName represents the sequence name of the dataset in the RGB-D 
SLAM database.

The main motion in dataset 1 is translation along the X, Y, Z 
axis with a speed of 0.244 m/s, which has the fastest ATV except 
dataset 4. In addition, dataset 1 contains only a small AAV with 

a duration of 30.09 s and a total motion distance of 7.112 m. 
This is a fundamental and straightforward dataset. Thus, this 
study uses this dataset as a baseline experiment. Dataset 2 
is similar to dataset 1, which is still primarily a translation, 
and dataset 2 signifi cantly reduces the AAV to evaluate the 
rotation robustness. Dataset 3 moves the experimental scene 
to an empty lobby where the camera moves around the desk 
and returns to its original position, which triggers the close-
loop. Dataset 4 is the most complex dataset with large ATV and 
AAV. Moreover, Dataset 4 has no closed loop, which is used to 
compare with dataset 3 to verify the interaction between GMS 
and closed-loop.

Considering the monocular V-SLAM system initialization 
is unstable, the results provided in this study are the average 
value of ten repeated experiments, and the extreme results 
with high-bias key-frame amount have been deleted.

The ORB key-point amount per frame

According to Ref. [39], real-time is very important for the 
V-SLAM system [39]. In feature engineering, the more key 
points can remain, the more information can signifi cantly 
decrease the frame-per-second (fps). The comparison system 
used in this study is the ORB-SLAM2 system [29], which uses 
the default 1000 OKA. The OG-SLAM framework fi lters out the 
false GMS matches. Therefore, it is evident that the OG-SLAM 
requires more than 1000 OKA. Fossum states that the frame 
rate of a typical camera is at least 30 fps because the human 
eye can feel inconsistency when the frame rate is less than 
30 fps [40]. Therefore, to balance the OKA and the real-time 
performance, the OG-SLAM system uses 30 fps as a real-time 
watershed, and all the OG-SLAM have to be 30 fps or more.

The experimental results show that the optimal ORB feature 
extraction amount is 1,800, and the specifi c experimental 
records are shown in Table 2. The idx stands for different 
dataset numbers. ORB-SLAM2 suggests the high-resolution 
image (such as the image in the KITTI database, 1242×370 
pixels) should use 2000 OKA, thus OG-SLAM starts from 2000 
OKA, and then half-converges to the eventual OKA. As the red 
block shown in Table 2, the fps of OG-SLAM crosses the 30 fps 
between 1800 and 1850 in dataset 3. Therefore, the OKA of OG-
SLAM is set to 1800 to keep the real-time performance.

Result and discussion

This study uses the ORB-SLAM2 system as a comparison to 
evaluate the accuracy and real-time performance of the OG-
SLAM framework. According to Mur-Artal, the ORB-SLAM2 
system is the advanced version of the ORB-SLAM system, and 
ORB-SLAM2 achieves the best result among all other state-of-
art V-SLAM systems [29,39].

The ORB-SLAM2 has been used in two settings, and both of 
them are compared with the OG-SLAM framework. The O1000 
represents the default ORB-SLAM2 model, which extracts 1000 
OKA. The O1800 represents another ORB-SLAM2 model with 
1800 OKA. G1800 represents the OG-SLAM framework with 
1800 OKA. 

Table 1: The specifi cations of the four OG-SLAM experimental datasets.

idx D (s) GTL (m) ATV (m/s) AAV (deg/s) SName

1 30.09 7.112 0.244 8.920 fr1/xyz

2 122.74 7.029 0.058 1.716 fr2/xyz

3 99.36 18.880 0.193 6.338 fr2/desk

4 23.40 9.263 0.413 23.327 fr1/desk

The red numbers highlight the most prominent differences for each dataset, which 
are also the corresponding control parameter for each dataset.
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KFA represents the key-frame amount. ATER represents the 
root-mean-square error of absolute trajectory error (ATE). The 
ATER is calculated using the online RGB-D SLAM benchmark, 
which compares the key-frame trajectory with the ground 
truth data [38]. fps stands for the frame per second. accIpv 
corresponds to the accuracy improvement, fpsDcs corresponds 
to the fps decrease. The left column is the comparison result 
between O1000 and G1800, and the right column is the 
comparison result between O1800 and G1800. DER represents 
the drift error ratio, which is obtained by Equation (17).

DER  ATER
GTL

                           (17)

As shown in Table 3, dataset 1 achieves the best accIpv 
compared with O1000, 74.56%. However, the ATER value 
of O1800 is 0.017, while G1800 is 0.014. Both of them have 
decreased signifi cantly compared to 0.053 for O1000. This 
shows that increasing the number of initial feature points 
can greatly improve the V-SLAM system accuracy. However, 
dataset 1 is diffi cult to distinguish the performance of the local 
optimization, G-VO, in the OG-SLAM framework.

As shown in Table 4, dataset 2 can be found that the 
accuracy of the ORB-SLAM2 system is greatly improved, when 
the AAV is signifi cantly decreased. The OG-SLAM accIpv for 
datasets 1 and 2 are basically the same, but the ORB-SLAM2 
accIpv has numerous differences. This illustrates that the OG-
SLAM has better robustness for rotation compared to ORB-
SLAM2 systems.

As shown in Table 5, dataset 3 has the longest GTL. The 
drift error is a cumulative value, thus dataset 3 contains the 
highest DER compared to the other three datasets. However, 
compared to the ORB-SLAM2, the OG-SLAM still achieves 
22.21% and 13.42% accIpv corresponding to O1000 and O1800.

Dataset 4 has no closed-loop. As mentioned in Section 3, 
this study uses dataset 4 to evaluate the robustness of OG-
SLAM under loop-free conditions. As shown in Table 6, simply 
increasing OKA does not play a positive role in the ORB-SLAM2 
system, However, OG-SLAM still achieves more than 15% 
accIpv. Therefore, the OG-SLAM has better robustness in loop-
free conditions.

Then, compare the fpsDcs value among the four datasets. 
When the OKA of ORB-SLAM2 is 1000, the OG-SLAM 
signifi cantly improves the accuracy, and it is also noteworthy 
that all the FPS is higher than 30 fps. When the OKA of ORB-
SLAM2 is 1800, the OG-SLAM still improves around 18.41% 
accuracy while the FPS is basically the same as the O1800 model 
of ORB-SLAM2. This means the main reason for the fpsDcs is 
the OKA increase, but the proposed G-VO does not calculate of 
V-SLAM becomes more expensive.

Conclusion

This study proposes a real-time high-accuracy monocular 
V-SLAM framework using ORB feature extraction and a GMS 
feature matching algorithm. The four datasets are used to test 
the translation, rotation, GTL, and closed-loop robustness of 
the OG-SLAM framework. Compared with the ORB-SLAM2 
system, the OG-SLAM framework achieved a maximum 
accuracy improvement of 74.56% in dataset 1. Furthermore, 
in the case of the same OKA, the OG-SLAM framework still 

Table 2: The fps records for OG-SLAM framework OKA selection.

 idx
OKA

1 2 3 4

1000 43.14 45.23 40.82 45.02

1500 37.25 37.93 33.29 37.96

1750 34.52 34.34 30.58 35.40

1800 33.40 33.72 30.41 34.85

1850 33.09 33.42 29.25 34.69

1900 32.52 32.72 28.01 35.02

2000 31.01 30.69 28.21 33.77

The red number is the real-time result lower than 30 fps, and the black number is 
the real-time higher than 30 fps.The red block highlights the boundary for crossing 
the 30 fps limit.

Table 3: Experimental records of dataset 1.

SS
item

O1000 O1800 G1800

KFA 29.9 24.5 24.1

ATER 0.053 0.017 0.014

fps 42.23 33.45 33.40

DER 0.75% 0.23% 0.19%

accIpv 74.56% 20.06%

fpsDcs 8.78 0.05

The red bold is the highest accIpv in four datasets, while the fpsDcs changes very 
tiny.

Table 4: Experimental records of dataset 2.

SS
item

O1000 O1800 G1800

KFA 33.0 27.0 26.8

ATER 0.128 0.116 0.093

FPS 44.46 33.84 33.72

DER 1.82% 1.65% 1.32%

accIpv 27.29% 23.68%

fpsDcs 10.74 0.12

The red bold is the highest accIpv between O1800 and G1800, while the fpsDcs 
decrease only a little.

Table 5: Experimental records of dataset 3.

SS
item

O1000 O1800 G1800

KFA 123.5 101.3 100.3

ATER 0.806 0.724 0.627

FPS 40.54 30.13 30.41

DER 4.27% 3.83% 3.32%

accIpv 22.21% 13.42%

fpsDcs 10.13 -0.28

The red number highlights the G1800 has even better real-time effi  ciency than the 
O1800.
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achieves an average accuracy improvement of 18.41% without 
reducing the real-time performance. The OG-SLAM framework 
proposed in this study is effective in the monocular V-SLAM. 
Under the premise of ensuring real-time performance, the 
accuracy of key-frame trajectory estimation has signifi cantly 
improved. OG-SLAM has superior performance compared to 
ORB-SLAM2.

(Appendix)
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