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Introduction

Diabetes mellitus (DM) is a group of chronic metabolic 
conditions, all of which are characterized by elevated blood 
glucose levels resulting from the body’s inability to produce 
insulin or resistance to insulin action, or both [1]. Blood 
glucose levels that are too high or too low can cause a series of 
diabetes-related complications [2-4]. 

With the progress of blood glucose monitoring technology, 
the clinical application of a continuous glucose monitoring 
system (CGMS) is gradually popularized. CGMS is a blood 
glucose monitoring system, which is designed to continuously 
monitor interstitial fl uid (ISF) glucose levels within a range 
of 40-400 mg/dl [5]. The CGMS is consisted of a disposable 
sensor inserted into the subcutaneous tissue, taches to a sensor 
and receiver that displays and stores glucose data [6] and can 
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obtain complete blood glucose levels fl uctuation curve by 
converting glucose concentration in ISF to blood glucose levels. 
Therefore, CGMS can be used to assess blood glucose levels 
comprehensively and document more accurately the actual 
incidence of hypoglycemia and make it possible to develop 
blood glucose prediction models [7-8].

Blood glucose prediction models [9] mainly include 
data-driven blood glucose prediction models, physiological 
blood glucose prediction models and mixed-blood glucose 
prediction models. Physiological models [10] are usually built 
based on extensive knowledge and understanding of insulin, 
glucose metabolism and other parameters. Data-driven 
models [11] mainly rely on blood glucose measurements. 
Hybrid blood glucose prediction models [12] combine the two 
previous approaches together. Since physiological models are 
somewhat time-consuming and require prior knowledge to set 
physiological constants, data-driven blood glucose prediction 
models have gained popularity in recent years. Yang, et al. 
[13], proposed an autoregressive integral moving average 
(ARIMA) model with an adaptive recognition algorithm 
of model for blood glucose prediction and hypoglycemia 
warning. Sparacino, et al. [14], demonstrated a fi rst-order 
autoregressive (AR) model to predict blood glucose levels, 
with a prediction horizon (PH) of 45min. Wang, et al. [15], 
proposed a new adaptive weighted average framework for 
blood glucose prediction algorithms, of which the main idea 
was to give each algorithm an adaptive weight, where the 
weight of each algorithm was inversely proportional to the sum 
of squared prediction errors. The method achieved satisfactory 
results for blood glucose prediction and it had very strong 
robustness to changes in patients and PHs. Pérez-Gandía, 
et al. [16], used an Artifi cial Neural Network (ANN) model 
based on CGMS data. Fernandez, et al. [17], used an artifi cial 
neural network to predict blood glucose levels based on patient 
dynamics, CGMS measurements, and insulin doses. Wang, et 
al. [18], proposed a short-term blood glucose prediction model 
combining variational mode decomposition (VMD) and an 
improved Particle swarm optimization optimizing long short-
term memory network (IPSO-LSTM) and the model had high 
prediction accuracy even when PH was extended to 60min. In 
general, the more accuracy of blood glucose prediction and the 
longer PH can provide clinicians and patients with suffi cient 
time to prevent hypoglycemia events.

With the development of information technology, more and 
more machine learning algorithms are introduced in the fi eld 
of blood glucose prediction, such as Long Short-Term Memory 
(LSTM) [19,20] and GRU [21]. Due to the working principles of 
the LSTM and GRU being similar and these two models being 
defi cient in each other, this paper proposed a composite model 
for blood glucose levels prediction and hypoglycemia warning.

The structure is set as follows: In the fi rst part, an 
introduction to the basic principle of the three models is 
carried out. The second part introduces the experimental 
dataset and the process followed to develop a set of indicators 
that are evaluated in this paper. The third part presents the 
experimental results. The fourth part gives the discussion. And 

the last part provides conclusions of the paper and outlines 
directions for future research.

Modeling principle

To predict blood glucose levels, a combination model was 
proposed, illustrated in Figure 1. It contains an LSTM layer, 
a GRU layer and a fully connected layer. Take several blood 
glucose values as input and train through LSTM and GRU. A 
fully connected layer to output the predicted level.

The fi rst layer is the LSTM layer, illustrated in Figure 2, 
consisting of a forget gate ft, an input gate it and an output gate 
ot. The forget gate decides what information to discard. The 
input gate determines what information is inputted to the cell 
state. The calculating process in LSTM cells is as follows.

ó( , )1f W h x bt ttf f
    

( , )1i W h x bt ti it     

 ~
tanh ,1C W h x bt c ctt

   

~
* *1C f C i Ctt t tt 

Figure 1: Principle of the combinational model.

Figure 2: Principle of the LSTM.
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Where the xt is input and ht-1 is the hidden state of the 
previous moment. W, b represent the weights matrix and biases 
vector, respectively and Ct-1 is the cell state of the previous 
moment. In addition, ht-1 is hidden state of the previous 
moment and 

~
Ct  is candidate cell state.

The ht-1 and xt are activated by the sigmoid function of the 
output gate to obtain ot and the new cell state is activated by 
the tanh function to update the hidden state ht.

( , )1o W h x bo ot tt     

* tanh( )h o Ct t t

Wf, Wi, Wc, Wo and bf, bi, bc, bo are parameters of the model and 

can be learned.

The above content is the calculation process of the LSTM 
and its entire network follows the rules of backpropagation 
and gradient descent to update parameters. This structure can 
effectively screen the effective features of long-term data and 
solve the long-dependency problem of the RNN (recurrent 
neural network).

The second layer is the GRU unit, illustrated in Figure 3. The 
two gates of the GRU are called the reset gate rt and the update 
gate zt . rt determines how much of the secret state at the last 
moment is retained and how much is reset. zt is used to control 
the degree to which the state information of the previous 
moment is brought into the current state. The updated formula 
is as follows.

( , )1r W h xrt tt    

( , )1z W h xzt tt    

~
tanh( * , )~ 1h W r h xt t ttht

    

 
~

1 * *1h z h z htt t tt  

Where 
~
ht  is the candidate’s hidden state. Wr, Wz, ~W

ht
are 

parameters of the model and can be learned.

Finally, extract all hidden states, make the fi nal output 
hidden state  { , , , }1 2h h h hn t  and then calculate with the 

output weight Wn and the output bias vector bn to obtain the 

predicted value
^
y .

^
y W h bn n n 

Experiments

A. Dataset: The blood glucose curves of 100 patients 
with DM who received subcutaneous insulin infusion 
therapy during hospitalization in the Endocrinology 
Department of Henan Provincial People’s Hospital were 
retrospectively analyzed from March 2017 to December 

2017. All patients met the World Health Organization 
(WHO) DM diagnostic criteria [22]. The following DM 
patients were excluded: DM patients with critically ill 
and unstable patients, gestational diabetes, allergies, or 
a history of tape allergy, the wearing time is less than 
72 hours and the original blood glucose levels sequence 
has a breakpoint.

B. Data preprocessing: The original CGMS data was 
nonlinear and non-stationary. fi rstly, we decomposed 
the original CGMS data using the sym5 wavelet 
transform [23], removed high-frequency signals, kept 
low-frequency signals and used a one-dimensional 
reconstruction function to obtain denoised blood glucose 
curves, illustrated in Figure 4. This method improved 
the validity of the original CGMS data and the accuracy 
of the model prediction, to some extent. Secondly, To 
get a better prediction effect, a min-max normalization 
was used to transform blood glucose levels to the range 
(0,1).

C. Performance evaluation: Correlation analysis was used to 
evaluate the degree of correlation between the predicted 
blood glucose level and the CGMS data. The greater the 
correlation, the better the prediction is. RMSE (Root 

Figure 3: Principle of the GRU.

 

Figure 4: Wavelet denoising.
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Mean Square Error), MAPE (Mean Absolute Percentage 
Error) and MAE (Mean Absolute Error) [24], were used 
in this paper to evaluate the prediction performance of 
the LSTM, GRU and LSTM-GRU models. This paper took 
RMSE as a statistical indicator and repeated-measures 
analysis of variance (ANOVA) was used to compare the 
prediction performance between the three models and 
obtained the best predictive model.  

Carrillo-Moreno, et al. [25], stated that the PH has to be long 
enough (at least 15min), so clinicians and patients have time to 
adjust their treatment. This paper compared three models with 
four different PHs: 15min, 30min, 45min and 60min.        

The above statistical methods were all operated by the SPSS 
26.0 and p < 0.05 was considered statistically signifi cant.

Clark Error Grid Analysis(EGA) [26]: Using the Beckman 
analyzer as the reference, the grid is subdivided into fi ve zones: 
A, B, C, D and E. Values in zones A and B represent accurate 
or acceptable and values in Zone C, D and E represent error 
and the data is not desirable. The ISO15197:2013 standard [27], 
requires 99% of the blood glucose levels to fall within zones A 
and B.

D. hypoglycemia warning: The International Hypoglycaemia 
Study Group (IHSG) defi nes hypoglycemia as a 
measurable glucose concentration of 3.9mmol/l [28]. 
hypoglycemia warning means when the blood glucose 
level predicted in advance fall below the threshold 
of 3.9mmol/l, the model will trigger hypoglycemia 
alerts timely and notify clinicians and patients to take 
action to prevent hypoglycemia before it happens. TP, 
TN, FP and FN [29] were used to assess each of the 
indicators, which included sensitivity, false-positive 
and false-negative used to evaluate the performance 
of hypoglycemia warning. This paper explored the 
hypoglycemia warning performance with PH was 
extended.

Results

A. Pearson correlation analysis 

The results of Pearson correlation analysis between the 
predicted blood glucose level of the three models and the 
original blood glucose level acquired by CGMS are shown in 
Table 1. For different PHs, the predicted blood glucose level of 
each model was positively correlated with the original blood 
glucose level acquired by CGMS (p < 0.001). The R - values (R = 
0.995) of the LSTM-GRU model were identical when different 
PHs, nevertheless, a reduction in the LSTM and GRU model’s 
performance start to appear when PH was 30 min or longer. 

B. Repeated-measures ANOVA

The prediction performance of 100 DM patients is shown 
in Table 2 and the results of the RMSE value variance analysis 
are provided in Table 3. When PH was 15min, 30min, 45min 
and 60min, the mean RMSE values of the LSTM-GRU model 
were 0.259, 0.272, 0.275 and 0.278 (mmol/l), respectively. The 
mean RMSE values of the LSTM-GRU model were lower than 
those of the LSTM and GRU models with identical PHs and had 
statistically different (p < 0.001), while the mean RMSE values 
of the LSTM and GRU models had no statistical signifi cance (p 
> 0.05).

C. Clark error grid analysis

The EGA results of the three models are shown in Table 4 
and Figure 5. Due to zones C, D and E being of little signifi cance 
for clinical reference, it was not listed in Table 4.

D. Results of hypoglycemia warning 

The hypoglycemia warning performance of 60 DM patients 
with hypoglycemia is shown in Table 5. When PH was 15min, 
30min, 45min and 60min, the mean sensitivity were 91.21%, 
89.71%, 89.21% and 88.73%, the mean false-negative rate 
were 8.79%, 10.29%, 10.79% and 11.27%, the mean false-
positive rate were 0.88%, 0.90%, 0.87% and 0.87%. As the PH 
was extended, the results of the false-positive rate were almost 
identical, nevertheless, the sensitivity of the model gradually 
decreased, but the false-negative rate gradually increased and 
some differences in the model performance start to appear 
when the PH was 30min. The results of the statistical analysis 
of sensitivity are shown in Table 6. The sensitivity of the model 
with a PHs of 30min or longer had signifi cant differences from 
the sensitivity of a PH of 15min (p < 0.05), while the sensitivity 
with a PHs of 30min, 45min and 60min had no difference (p > 
0.05). This paper took patient B as an example and its warning 
result is shown in Figure 6.

Discussion

The purpose of blood glucose control is to reach a normal 
concentration of blood glucose, minimizing the occurrences of 
hypoglycemia and hyperglycemia, respectively. Hypoglycemia 
can invoke dangerous situations, is feared by many patients 
with diabetes and is recognized as a key factor that can 
lead to failure to reach and maintain good glycemic control, 
repeated episodes of hypoglycemia can increase the incidence 
of diabetes-related complications [30]. Therefore, controlling 
the normal concentration of blood glucose with modern 
information technology is of great signifi cance for reducing the 
occurrence of diabetes-related complications.

Based on both the LSTM and GRU models regulating 
information fl ow through gate mechanisms, the LSTM-GRU 
model in this paper was proposed. The results show that a PH 
of 15min had the highest accuracy and a reduction in prediction 
accuracy of the three models, as the PH was extended. However, 
the prediction errors of the three models were all within the 
acceptable range. A PH of 15min is the most accurate, but 
they do not provide enough time for clinicians to take action 

Table 1: Correlation coeffi  cients of the three models with different PHs.

model
   15min 30min 45min 60min

R p R p R p R p 
LSTM-GRU 0.995 <0.001 0.995 <0.001 0.995 <0.001 0.995 <0.001   

LSTM 0.995 <0.001 0.995 <0.001 0.994 <0.001 0.993 <0.001
GRU 0.995 <0.001 0.995 <0.001 0.994 <0.001 0.993 <0.001

Note: Pearson correlation coeffi  cient (R): 0.8~1.0 very strong correlation.
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when hypoglycemia happened and the models with a PHs of 
30min or longer are good enough to allow a patient to do the 
necessary adjustments in insulin delivery and consequently to 
prevent the occurrence of hypoglycemia events. Theoretically, 
the longer PH, the higher the clinical value is. However, due to 
a reduction in prediction performance over time, the longest 
time was 60min in this paper.

Correlation analysis can be a good measure to evaluate the 
degree of correlation between the blood glucose level predicted 
by the model and the original blood glucose level acquired by 
CGMS. The results showed the R-values of the LSTM-GRU 
model were identical with different PHs (R = 0.995), while the 
R-values of the LSTM and GRU models started to reduce when 
PH was 30 min or longer, but all values had excellent correlations 
(R > 0.5, p < 0.001), which provided certain theoretical support 
for the LSTM-GRU model to be used for accurate long-term 
prediction. Zones A and B of the EGA represent the clinically 
accurate and acceptable zones, respectively. With different 
PHs, the proportion of the LSTM-GRU model in zones A and 
B was higher than in the LSTM and GRU models. That is, as 
the PH was extended, the blood glucose levels predicted by the 
LSTM-GRU model were closer to the original blood glucose 
level acquired by CGMS and the prediction effect was the best. 
The repeated-measures ANOVA results showed that RMSE 
values of the LSTM-GRU model had differences from the LSTM 
and GRU models with different PHs (p  0.05), and RMSE values 
of the LSTM-GRU model were lower than the LSTM and GRU 
models with identical PHs. In summary, we can conclude that 
the LSTM-GRU model had the best prediction performance. 
The reason might be the structure of the LSTM-GRU model. 

Table 2: Mean prediction performance of the three models with different PHs.

15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

L-G 0.176 0.259 2.652 0.186 0.272 2.760 0.189 0.275 2.823 0.192 0.278 2.871

LSTM 0.180 0.267 2.696 0.189 0.280 2.888 0.199 0.294 3.147 0.220 0.318 3.395

GRU 0.182 0.270 2.762 0.192 0.281 2.920 0.222 0.298 3.157 0.224 0.319 3.440

Table 3: The results of RMSE value variance analysis with different PHs.
15min 30min 45min 60min

p - value 95% CI p - value 95% CI P-value 95% CI p - value 95% CI
1 0.000 (0.005, 0.011) 0.000 (0.005, 0.011) 0.000 (0.013, 0.026) 0.000 (0.026, 0.053)
2 0.000 (0.007, 0.016) 0.000 (0.006, 0.013) 0.000 (0.015, 0.030) 0.000 (0.027, 0.053)
3 0.102 (0.000, 0.007) 0.535       (-0.001, 0.004) 0.633 (-0.002, 0.009) 1.000 (-0.005, 0.006)

Note 1: LSTM and LSTM-GRU model. 2. GRU and LSTM-GRU model. 3. GRU and LSTM. 95%CI: 95% confi dence interval.

Table 4: The EGA results of the three models (A+B%).

Model
   15min 30min 45min 60min

 A B A B A B A B  
LSTM-GRU 99.71 0.26 99.72 0.25 99.71 0.26 99.67   0.29

LSTM 99.71 0.25 99.71 0.26 99.64 0.32 99.59   0.36
GRU 99.68 0.30 99.68 0.28 99.65 0.31 99.54   0.31

Table 5: Hypoglycemia warning performance of the LSTM-GRU model with different 
PHs.

15min 30min 45min 60min

false-positive rate 0.88% 0.90% 0.87% 0.87%

false-negative rate 8.79% 10.29% 10.79% 11.27%

sensitivity 91.21% 89.71% 89.21% 88.73%

Table 6: Comparison of sensitivity differences of the LSTM-GRU model with different 
PHs.

A B C D E F

p 0.016 0.025 0.012 0.533 0.273 0.281

95% 
CI

(0.291, 
2.722)

(0.260, 
3.739)

(0.573, 
4.394)

(-1.081, 
2.068)

(-0.791, 
2.746)

(-0.406, 
1.374)

Note: A:15min and 30min. B:15min and 45min. C:15min and 60min. D:30min and 
45min. E:30min and 60min. F:45min and 60min. 95%CI:95% confi dence interval.

         

(a) LSTM-GRU model                     (b) LSTM model 
  

                  
(c) GRU model 

Figure 5: The EGA results of the three models (60min).

Figure 6: Hypoglycemia warning fi gure (60min).
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The fi rst layer is the LSTM unit, which inherits the learning 
advantages of the LSTM model in a longer time range. On this 
basis, The second layer was the GRU unit, which made the 
sample data easy to train and shortened the operation time. 
Finally, a fully connected layer (dense layer) was used to 
connect the hidden layer and the output layer. The LSTM-GRU 
model made up for the insuffi ciency of a single model, which 
improved the overall prediction performance of the model and 
prolonged the PH. 

Based on the effi cient prediction performance of the 
LSTM-GRU model, the hypoglycemia warning was further 
proposed in this paper. When PH was 15min, 30min, 45min 
and 60min, the mean sensitivity of the LSTM-GRU model was 
91.21%, 89.71%, 89.21% and 88.73% and Figure 6 confi rmed 
the mean sensitivity of the model with a PHs of 30min, 45min 
and 60min had no signifi cant difference (p > 0.05). When 
PH was 30min or longer, the sensitivity of the hypoglycemia 
warning of the LSTM-GRU model had subtle changes, which 
provided the theoretical basis for long-term hypoglycemia 
warning. The hypoglycemia warning is helpful for clinicians 
and patients, which provides enough time for clinicians to 
take action to prevent hypoglycemia events and has excellent 
clinical application value. The above results may be when 
PH was 30min or longer, the sensitivity of the hypoglycemia 
warning of the model had subtle changes, which resulted in 
its hypoglycemia warning performance remaining stable with 
a PHs of 30min or longer. 

Conclusion

The LSTM-GRU model in this paper was proposed for 
blood glucose prediction and compared its blood glucose 
prediction performance with the LSTM and GRU models. we 
found the LSTM-GRU model performed the best and used the 
model for hypoglycemia warning, which would help prevent 
the complications of hypoglycemia and save lives. In future 
work, we will consider larger datasets, perhaps including 
many physiological indicators. In addition, we can continue to 
explore the impact of different hypoglycemia thresholds and 
blood glucose fl uctuations on the experimental results.
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