
086

Citation: Sharma G, Poudel P (2022) Current trends in heterogeneous systems: A review. Trends Comput Sci Inf Technol 7(3): 086-090.
DOI: https://dx.doi.org/10.17352/tcsit.000055

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN:

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Introduction

To improve the performance of existing processors, the
industry has gradually shifted to the heterogeneous platform
with multiple cores of CPUs and CPU-GPU combinations.
There are GUP-GPU combinations in order to accelerate
different demanding tasks [1]. And the future of heterogeneous
systems seems to be moving towards the System on Chip (SoC)
designs where all different types of processors like Graphical
Processing Units (GPU), Central Processing Units (CPU), Neural
Processing Units (NPU), etc. are being built in a single chip and
they tend to have shared memory. This kind of heterogeneous
architecture can be found in small smartwatches to laptop and
desktop computers as of 2022. Big companies like Apple have
started to build such heterogeneous systems. And for more
power-hungry tasks there is still use of CPU-CPU, CPU-GPU
hybrid heterogeneous systems are still in use. This trend shows
that new heterogeneous systems are becoming more and more
important from regular computing to high-performance
computing. After single-core and multi-core, heterogeneous
computing is considered the third age by the industry. It will
be a key emerging model in the fi eld of high-performance

computing, as it will be able to successfully tackle problems
such as energy consumption and scalability [2]. With different
processing units there comes the problems of task scheduling
and software compatibility when the heterogeneous system is
being built with different architecture CPUs [3] Figure 1.

Processors in heterogeneous computing systems are
becoming increasingly tightly coupled, which means they
are connected via the memory bus and hence share cache-
coherent memory. Although platform-wide shared memory is
a clear trend, cache-coherency has been identifi ed as a major
stumbling block to scaling to higher core counts, paving the
way for software-programmed coherency [4]. Applications
should be able to leverage all available processor resources
by smoothly operating across various processors to harness
diversity and by mapping data and optimizing sharing to
avoid hardware overheads to take advantage of upcoming
heterogeneous platforms [5]. For a program model, starting
the application on the main processor (CPU) and offl oading
sections of the application to a specialized accelerator (GPU)
that atomically does computation and provides the result is a
typical technique used in heterogeneous platforms.

Abstract

Looking at the heterogeneous system, this paper touches on the architecture of heterogeneous systems, program models, and some challenges in this fi eld. Heterogeneous
systems have become an important development trend in the current high-performance computing fi eld. Heterogeneous systems can be seen from smartwatches, mobile phones
and laptops to server systems. This paper will explore diff erent types of heterogeneous systems such as CPU-GPU architecture, and ARM big. Little architecture. The program model for
diff erent types of heterogeneous systems where we will see how diff erent architecture heterogeneous systems work. Then we will see some of the challenges in the heterogeneous
system and fi nally some recommendations for future work.

Review Article

Current trends in heterogeneous
systems: A review
Gajendra Sharma* and Prashant Poudel
School of Engineering, Department of Computer Science and Engineering, Kathmandu

University, Dhulikhel, Kavre, Nepal

Received: 16 November, 2022
Accepted: 23 November, 2022
Published: 24 November, 2022

*Corresponding author: Gajendra Sharma, School of
Engineering, Department of Computer Science and Engi-
neering, Kathmandu University, Dhulikhel, Kavre, Nepal,
Tel: 9840093887; E-mail:

Keywords: Heterogeneous system; CPU-GPU Architecture;
ARM big. LITTLE

Copyright License: © 2022 Sharma G, et al. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

https://www.peertechzpublications.com

087

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Sharma G, Poudel P (2022) Current trends in heterogeneous systems: A review. Trends Comput Sci Inf Technol 7(3): 086-090.
DOI: https://dx.doi.org/10.17352/tcsit.000055

In this paper, we will focus on different types of
heterogeneous systems. This paper will discuss some of the
problems in existing heterogeneous platforms and what could
be the way forward to a heterogeneous system.

Heterogeneous system architecture

The current heterogeneous systems mainly have the
following architectures: Cell/B.E., CPU+GPU, APU, CPU+MIC,
and CPU+FPGA. Among them, FPGAs are mainly used in the
high-performance requirements of embedded systems, while
the heterogeneous system architectures used in the traditional
high-performance fi elds mainly include Cell/B. E. CPU+GPU,
APU, and CPU+MIC.

Cell/B. E. (Cell Boardband Engine)

Cell/B. E., often known as the Cell processor, is a multi-
core microprocessor microarchitecture that combines a low-
performance general-purpose PowerPC core with streamlined
co-processing parts that substantially enhance multimedia
and vector processing workloads, as well as a variety of
other specifi c computations. The Cell processor is a totally
independent heterogeneous processor with a high use cost
that is currently only found in high-end servers [6]. The Cell
processor’s appeal in general high-performance domains is
limited, its continued growth is likewise constrained, and its
benefi ts in heterogeneous systems are increasingly diminishing
Figure 2.

GPU heterogeneous system architecture

The CPU+GPU architecture is mostly used in GPU
heterogeneous systems. The primary purpose of the GPU is to
provide high-throughput data-parallel computing with a large
number of threads, which is ideal for large-scale data-parallel
applications requiring high computational density and simple
logic branching. The CPU features a complicated logic control
unit and a large-capacity cache, has a short data transmission
latency, is adaptable to a variety of tasks, and excels at complex
logic operations. The CPU+GPU architecture is used to combine
the CPU’s and GPU’s respective advantages, allowing the GPU
to process data-intensive parallel tasks while the CPU handles
complex logical transaction processing. This allows the CPU and
GPU to fully exploit their respective advantages and maximize
the utilization of heterogeneous systems. Processing power,
lowering computational expenses, and using less energy [7]
Figure 3.

APU heterogeneous system architecture

The main feature of an APU (Accelerated Processing Unit)
is that it contains all the processing capabilities composed of
scalar and vector hardware. Due to the integration of the two
computing cores, the main frequency of the processor and
the number of processing cores are limited by the chip space,
manufacturing process, and heat dissipation. At the same time,
the X86 CPU and GPU vector processor in the current APU
has not yet achieved seamless integration [8], so its overall
computing performance is slightly insuffi cient compared
with the architecture in which the main processor and the
coprocessor are separated Figure 4.

MIC heterogeneous system architecture

Intel introduced the MIC (Many Integrated Core) integrated

Figure 1: Architecture of CPU-GPU Heterogeneous Platform.

Figure 3: CPU+GPU Heterogenous Platform interconnected by PCIe.

Figure 4:AMD APU Architecture.
Figure 2: Cell Broadband Engine Architecture based on a heterogeneous chip
multiprocessor.

088

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Sharma G, Poudel P (2022) Current trends in heterogeneous systems: A review. Trends Comput Sci Inf Technol 7(3): 086-090.
DOI: https://dx.doi.org/10.17352/tcsit.000055

many-core coprocessor in 2011. Its vector expands the
typical microprocessor and then merges several enlarged
cores to increase computational capacity even further.
Unlike typical accelerators, the MIC coprocessor has its own
independent micro-operating system, making it more akin
to a high-performance computing node that can be accessed,
programmed, and fully functioning [9] Figure 5.

Arm big. LITTLE

ARM big. LITTLE technology is a two-type processor
heterogeneous processing architecture. While ARM CPUs
with “conventional” core setups exist, big. LITTLE-based
CPU architectures include two “clusters” of cores, each with
a distinct design for various workloads. We’ll see “high
performance” cores built to tackle demanding activities, as
well as “power-effi cient” cores that do more mundane jobs,
in these types of CPUs. High-performance cores are often
high-specced and power-hungry, with signifi cantly higher
clock rates, whereas power-effi cient cores are weaker, lower-
clocked, and use signifi cantly less power [10] Figure 6.

Program model

The common practice in heterogeneous platforms (CPU-
GPU) is to start the application on the main processor (CPU)
and during execution, offl oad parts of the application to
a specifi c accelerator (e.g., GPU) that atomically executes
a computation and returns the result. Offl oading requires

providing the remote processor with the code to be executed
and the data on which it has to operate; in most architectures,
this requires a data copy. This computational approach is
suitable for machines with little control, such as modern GPUs.
For growing heterogeneous platforms, however, forcing the
execution fl ow to return to the source processor at the end of
each offl oaded function is too rigid [11].

When we have to deal with multiple CPUs with different
Instruction Set Architectures (ISA) there is a problem with
software compatibility. Processors implementing different
ISAs not only have different instructions and register sets
but different native data storage formats, defi ned as the ISA’s
application binary interface (ABI). For different-ISA processors
with shared memory, they must agree on a common data
storage convention or data must be converted between formats
upon execution migration [3].

In the case of ARM big. In LITTLE architecture there are
two clusters of CPU cores with different clock speeds. A high-
performance core for raw performance and effi ciency-core to
save power. A LITTLE core is coupled with each BIG core. At
any one moment, only one core in each pair is active, with the
inactive core turned off. The pair’s active core is chosen based
on current load levels. The scheduler is aware of the big and
little cores’ different performance and energy characteristics.
The scheduler monitors the performance requirements of each
individual thread and utilizes that data to choose which type of
processor to use [12].

Challenges

Heterogeneous computing systems provide unique issues
that aren’t present in traditional homogeneous computing
systems. The presence of many processing units increases all
of the problems that homogeneous parallel processing systems
have, but the amount of heterogeneity in the system might
add non-uniformity to system development, programming
methods, and overall system capabilities. Here are some
challenges of a heterogeneous system.

Instruction-Set Architecture (ISA)/Application Pro-
gramming Interface (API)

Heterogeneous systems contain multiple computing
devices with different system architectures, instruction sets,
and programming models thus, heterogeneous systems
frequently have different programming models from CPUs. The
instruction set architectures of compute elements (Programs)
may differ, resulting in binary incompatibility. Compute
elements, similarly, may interpret memory in many ways.
This includes endianness, calling convention, and memory
layout, and is determined by the architecture and compiler
used. The solution to this problem is to let the CPU control the
computation and fi nish the calculation with the help of the
GPU.

Memory Interface and Hierarchy

Compute elements can have varied cache architectures
and cache coherency protocols, and memory access might be

Figure 5: Intel MIC Architecture.

Figure 6: Arm big. LITTLE Architecture.

089

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Sharma G, Poudel P (2022) Current trends in heterogeneous systems: A review. Trends Comput Sci Inf Technol 7(3): 086-090.
DOI: https://dx.doi.org/10.17352/tcsit.000055

uniform or non-uniform (NUMA). Differences in the capacity
to read arbitrary data lengths can also be discovered, as some
processors/units can only conduct byte-, word-, or burst reads.
Different threads in a parallel program access the same memory
with data sharing and access confl icts, different memories
with data transfer and communication concerns, and distinct
memories with different access methods and delays [13].

Interconnect

Aside from fundamental memory/bus interfaces, compute
elements may have many types of connection. Dedicated network
interfaces, Direct Memory Access (DMA) devices, mailboxes,
FIFOs, and scratchpad memories are examples of such devices.
Furthermore, while certain parts of a heterogeneous system
may be cache-coherent, others may require active software
participation to guarantee consistency and coherency. A robust
software framework for heterogeneous parallel programming
should allow programmers to utilize rich heterogeneous
resources to the fullest extent possible while still avoiding
having to pay attention to intricate hardware details.

Performance

In a heterogeneous system, CPUs with identical architectures
may have underlying micro-architectural variances that result
in varying degrees of performance and power consumption.
Capability asymmetries combined with opaque programming
models and operating system abstractions can sometimes lead
to performance predictability issues, particularly with mixed
workloads [14]. In order to overcome this issue, researchers
have proposed a model to analyze the performance of
heterogeneous multi-core systems to fairly divide computing
jobs [15].

Data partitioning

While splitting data on homogeneous platforms is frequently
straightforward, it has been demonstrated that the problem is
NP-Complete in the general heterogeneous case. It has been
demonstrated that optimal partitionings that fully balance the
load and minimize communication volume exist for modest
numbers of partitions. Further research is necessary to obtain
optimal partitioning in a heterogeneous platform.

Conclusion and future work

In the fi eld of high-performance computing, heterogeneous
systems have emerged as a signifi cant development trend.
It is critical to combine the newest multi-core technology
and ARM big. LITTLE architecture to make an effi cient, and
energy-saving new heterogeneous system. The primary issues
encountered in the process of employing the coprocessor
to speed the application program in the new heterogeneous
system are: how to make the main processor and the
coprocessor communicate properly? And how to get the most
out of the heterogeneous systems by using simplifying
programming approaches to boost application computing
performance. To address these issues, we must develop simple
and effective high-level abstract programming approaches
that can adapt to new heterogeneous systems, and support

fi ne-grained and coarse-grained parallelism, portability and
scalability, and energy-effi cient programming. Investigate a
unifi ed programming model capable of enabling simple and
effi cient application development on heterogeneous systems,
so that developed applications can adapt to different hardware
architectures and corresponding underlying support software,
and, when combined with corresponding compilation, runtime
systems, and performance optimization mechanisms, fully
exploit the effi cient computing power of heterogeneous
systems to deal with complex scientifi c computing problems.
A signifi cant study area in structural computing.

The future of heterogeneous systems lies in SoC technology
with big. LITTLE architecture. Apple has already started to
implement this technology of shared memory architecture
in their laptops and desktop computers. Shared memory
architecture makes much more sense as it will allow processors
to communicate better but for that, there needs to be a better
program model in terms of task scheduling, ABI translation (for
heterogenous CPU-CPU system), and a better cache coherency
model.

References
1. Yang XJ, Liao XK, Lu K. The TianHe-1A supercomputer: its hardware and software.

Journal of Computer Science and Technology. 2011; 26(3): 344-351.

2. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO. State-of-the-art in
Heterogeneous Computing. Scientifi c Programming. 2010; 1-33.

3. Lyerly R, Antonio B, Christopher J, Vincent L, Anthony C, Binoy R. Operating System
Process and Thread Migration in Heterogeneous Platforms. 2016.

4. Baumann A, Barham P, Dagand PE, Harris T, Isaacs R, Peter S, Roscoe T, Schupbach
A, Singhania A. The Multikernel: A New OS Architecture for Scalable Multicore
Systems. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles. SOSP. 2009; 9.

5. Beckmann N, Sanchez D. Jigsaw: Scalable Software-defi ned Caches. In Proceedings
of the 22Nd International Conference on Parallel Architectures and Compilation
Techniques, PACT. IEEE. 2013; 213–224.

6. Brodtkorb A, Hagen T, Sætra M. Graphics processing unit (GPU) programming
strategies and trends in GPU computing. Journal of Parallel and Distributed
Computing. 2013; 73: 4–13.

7. Nvidia Corporation. Compute unifi ed device architecture programming guide
[OL]. https://developer.nvidia.com/cuda-zone, 2022

8. Daga M, Aji AM, Feng WC. On the Effi cacy of a Fused CPU+GPU Processor (or APU)
for Parallel Computing. 2011 Symposium on Application Accelerators in High-
Performance Computing. 2011: 141-149.

9. Liu X, Smelyanskiy M, Chow E, Dubey P. Effi cient sparse matrix-vector multiplication
on x86-based many-core processors. In Proceedings of the 27th international ACM
conference on International conference on supercomputing (ICS ‘13). Association
for Computing Machinery, New York, NY, USA, 2013; 273–282.

10. ARM Technologies. https://www.arm.com/technologies/big-little, 2022

11. Barbalace A, Sadini M, Ansary S, Jelesnianski C, Ravichandran A, Kendir C, Murray
A, Ravindran B. Popcorn: Bridging the Programmability Gap in heterogeneous-
ISA Platforms. In Proceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15. 2015; 29:1–29.

12. Gottipati S. 2021. Exploring ARM and heterogeneous compute architecture.
https://www.druva.com/blog/exploring-arm-and-heterogeneous-compute-
architecture/

13. Zhong Z, Rychkov V, Lastovetsky A. Data partitio-ning on heterogeneous multicore
and multi-GPU systems using functional performance models of data-parallel
applications. In: 2012 IEEE International Conference on Cluster Computing. 2012;
191-199.

090

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Sharma G, Poudel P (2022) Current trends in heterogeneous systems: A review. Trends Comput Sci Inf Technol 7(3): 086-090.
DOI: https://dx.doi.org/10.17352/tcsit.000055

14. Kalidas R, Daga M, Keommydas K. On the Per-formance,Energy,and Power of Data-
Access Methods in Heter-ogeneous Computing Systems. In: IEEE International
Parallel &Distributed Processing Symposium Workshop. IEEE. 2015.

15. Goddeke D, Wobker H, Strzodka R. Co-processor acceleration of an unmodifi ed
parallel solid mechanics codewith FEASTGPU. International Journal of
Computational Science and Engineering. 2009; 4(4): 254-269

