
094

Citation: Violon D (2022) About Segmath, a new Cerebral Vascular Segmentation Software after CTA. Trends Comput Sci Inf Technol 7(3): 094-098. 
DOI: https://dx.doi.org/10.17352/tcsit.000057

https://dx.doi.org/10.17352/tcsitDOI: 2641-3086ISSN: 

E
N

G
IN

E
E

R
IN

G
 G

R
O

U
P

Introduction

Cerebrovascular diseases are a leading and increasing cause 
of morbidity and mortality. According to WHO data for Belgium 
from 2018, stroke accounts for 7263 deaths [1] or 7.94% of total 
deaths. In Belgium 63535 strokes occurred in 2007 [2] or more 
than 7 per hour.

Worldwide (WHO) 15 million people suffer a stroke every 
year [3], or nearly one person per 2 seconds, indicating the size 
and the scale of the problem; 5 million die, and 5 million are 
left disabled.

This immensely frequent pathology with dire consequences 
requires an early and fast workup on admission to start 
a dedicated therapy; CT is the mainstay in the diagnosis. 
Segmentation of vascular structures is essential in the 
diagnosis and therapy of occlusions [4]. The segmented 

image largely supplements the information of diffusion data, 
narrowing down the anatomical location of the occlusion(s); 
this information is critical regarding the new endovascular 
treatments becoming available. A CT with fast intravenous 
contrast injection is routinely performed. It appears that 
20% of large-vessel occlusions are missed on the initial CTA 
interpretation [5]. Vascular segmentation improves the stroke 
patient’s workfl ow [6]. The new software Segmath delivers a 
segmentation of cerebral vascular structures without osseous 
superpositions in moments where an unobstructed view is 
critical and even more so in the light of the new intravascular 
therapies. 

Materials and methods

The bulk of the Segmath software is written in MATLAB [7], 
a mathematical programming language with some additional 
chunks of C++ code.
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The program requires the CT slices to be presented in 
DICOM format, normally always available. The stacked two-
dimensional slices form a three-dimensional array, where each 
intensity element represents a voxel. Mathematical techniques 
can be applied to these arrays.

The three eigenvalues of the Hessian matrix are calculated 
for each voxel. Functions of the three eigenvalues permit 
quantifying the probability that a voxel belongs to a tubular 
structure (a vessel) or not. Software based on Hessian matrix 
analysis [8], provides a suboptimal enhancement of vascular 
bifurcations [9]. In Segmath, the proprietary designed functions 
of the three eigenvalues tend to remediate this problem and 
enhance the segmentation.

The diameter of the intracranial vascular structures varies 
in one individual and also varies between individuals [10]; the 
theory of “scale space” was thus applied [11,12].

The segmented volume is visualized with a three-
dimensional viewer, including translation, zooming, and free 
rotation functionality. The 3D viewer shows the MIP (Maximum 
Intensity Projection) of the segmented volume [13].

Separately, after the skeletonization of the segmented 
volume, the endpoints of each vascular structure are 
determined, offering an additional tool to detect occlusions 
or stops. These endpoints are superposed on the segmented 
volume, when desired, by choosing the correct tool. An 
endpoint was defi ned as a voxel having no connection with 
more than one other voxel. After convolution of the binarized 

and skeletonized volume with a 3 by 3 by 3 array of ones, the 
new resulting volume shows endpoints where the voxel value 
equals one or two.

Furthermore, other tools are provided. A shell (the thickness 
can be chosen) parallel to the external surface of the segmented 
volume can be removed. The volume can also be viewed from 
the volume’s center as growing concentric spheres. These 
two techniques allow viewing without hindering vascular 
superpositions e.g., in case of venous contamination.

The native MATLAB code is compiled into an executable. 
Together with the executable, a MATLAB runtime is delivered, 
avoiding the need for a MATLAB license for the Segmath user. 
All of this is encapsulated in a Graphical User Interface (Figure 
1). An original CT Dicom viewer is available, permitting the 
comparison of the segmented volume with the original CT 
exam. 

The technique was validated with synthesized data and 
real CTA’s. The synthesized data were based on a fractal 
tree growing algorithm with a varying number of branches, 
branching angles, branch length, and thickness. A small 
MATLAB program generated 24 3D fractal trees and these were 
considered ground truth. The volumes were segmented and 
compared with the ground truth. The metrics of the statistical 
analysis were sensitivity, sensibility, precision, accuracy, the 
Dice coeffi cient [14] and the continuous Dice coeffi cient [15].

The CTA series were from patients with a suspected stroke. 
The obtained segmentation was compared with the CTA. No 

 

Figure 1: Example of the Graphical User Interface of the Segmath segmentation software. The 3D viewer is located centrally and, on the side, the Dicom viewer. The 
pushbuttons on the left side steer the different processes. 



096

https://www.peertechzpublications.com/journals/trends-in-computer-science-and-information-technology

Citation: Violon D (2022) About Segmath, a new Cerebral Vascular Segmentation Software after CTA. Trends Comput Sci Inf Technol 7(3): 094-098. 
DOI: https://dx.doi.org/10.17352/tcsit.000057

angiographies were available for comparison. Another analysis 
method was designed. In the CT volume, and the segmented 
volume, 9 vascular segments of interest were screened on 
both sides for the presence or partial presence: intracranial 
carotid artery, anterior cerebral artery segments 1 and 2, 
middle cerebral artery segments 1, 2, and 3, the posterior 
communicating artery, the posterior cerebral artery, and 
the vertebral artery, together with the basilar artery and the 
anterior communicating artery, totaling to 20 observations per 
CTA or a global number of 280 measurements. Partial presence 
was included to allow both tests (CTA and segmentation) to 
agree or disagree on partial obliteration. 

Results

For the 24 synthesized volumes, the mean sensitivity was 
0.7904, the mean sensibility 0.9997, the mean precision 0.7396, 
the mean accuracy 0.9995, the mean Dice coeffi cient 0.7452, 
and the mean continuous Dice coeffi cient 0.8402. Together 
with these results, corresponding values in the literature are 
summarized in Table 1.

Sensitivity: 0.7180 [16], 0.8960 [17], 0.9000 [18], and 0.5588 
[8] as cited in [16]. Specifi city: 0.9090 [17] and 0.8500 [18]. 
Precision: 0.7290 [16]. Accuracy: 0.9790 [19]. Dice coeffi cients: 
0.7170 [16] and 0.3350 [8] as cited in [16].

For the CTA segmentations, the results are as follows.

In 242/280 (86.43%), both tests detected the presence of 
the structure, and in 25/242 (8.93%) both tests did not detect 
the structure. Full agreement was thus found in 95.36 % of the 
measurements.

In 12/242 (4.29%) measurements the segmented volume 
identifi ed the structure and this structure was very diffi cultly or 
not visible on CTA. In 1/242 (0.36%) observations segmentation 
failed to detect the structure, but CTA did. 

A few examples of segmented volumes are shown in a 
compound fi gure (Figure 2). 

Discussion

The presented program was written in MATLAB. This is 
an interpreted high-level language, meaning that the code is 
translated into machine language at the moment of execution. 
This is slower than compiled low-level code. However, by 
vectorizing the MATLAB code and consequent pre-allocation 
of arrays, avoiding loops, and using MATLAB’s inherent matrix 
and array possibilities, the speed of the code almost nears 
compiled low-level code.

Vascular segmentation became an important tool for 
diagnosis and therapy in many fi elds [20]. The interpretation 
of CTA exams can be diffi cult. 

Segmentation can be achieved in many ways. Manual 
segmentation is tedious, time-consuming, and hardly 
reproducible. There are many blood vessel segmentation 
algorithms, as described in an exhaustive review of the subject 
[20]. An automated segmentation (e.g., no seed points needed) 
of the vascular structures without user intervention is thus 
mandatory [21].

Therefore, Segmath chose to exploit the characteristics of 
the Hessian matrix. The intensities of points neighboring a 
point of a volume can be described by analyzing the few fi rst 
terms of the Taylor expansion [22], including the Hessian. 
The Hessian is a second-order partial derivative of the volume 

Table 1: Summary of statistical data (SE: sensitivity, SP: specifi city, PR: precision, AC: 
accuracy, DC: Dice coeffi  cient, cDC: continuous Dice coeffi  cient) retrieved from the 
literature concerning synthesized volumes and the Segmath results.

Reference SE SP PR AC DC cDC

Jin [15] 0.7180 0.7290 0.7170

Jerman [16] 0.8960 0.9090

Muzzolini [18] 0.9790

Sankaran [17] 0.9000 0.8500

Frangi [7] in [15] 0.5588 0.3350

Segmath 0.7904 0.9997 0.7396 0.9995 0.7452 0.8402

 

Figure 2: Example of a segmented volume.
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intensities. The eigenvalues of this Hessian matrix can be 
combined in functions used to determine the probability that 
a voxel belongs to a tubular structure, in this case, a vessel 
[8,17,23]. The analysis of the eigenvalues of the Hessian shows 
the direction of the smallest curvature [8]. The presented 
software Segmath utilizes original custom functions. 

The dimensions (such as diameter) of intracranial vessels 
vary in one individual, but also between different individuals 
[10,24]. For this reason, the segmentation algorithm was 
applied at different scales according to scale-space theory 
[12,25].

Some published segmentation algorithms work in 2D 
on individual CT slices. It was chosen to consider the 3D 
array consisting of stacked 2D slices as a whole, and proceed 
completely in 3D [19], so that the full 3D information is used. 

The presented Segmath software does not need a bone 
masking supplementary prior CT series, which would increase 
the total radiation burden.

The segmented volume is available to the user as a 3D 
representation. It is said, that 3D views of the patient’s anatomy 
are appreciated by surgeons [13]; this can be logically extended 
to those performing interventional procedures in this area. The 
provided CT Dicom viewer offers basic functionality: the slice 
number, window width, and window level choice.

The endpoints of the vessels can be helpful in the diagnosis 
of occlusions, obliterations, and stops of a structure.

The number of cases in both synthetic and real CTA’s used 
in the validation process conforms with routinely accepted 
numbers in literature [4,21,26-31].

The well-known metrics used for the synthesized 
volumes were sensitivity, specifi city, precision, accuracy, Dice 
coeffi cient [14] and the continuous Dice coeffi cient [15]. The 
Dice [14] coeffi cient is related to the size of the structure, with 
a smaller structure giving a lower Dice coeffi cient [15]. For this 
reason, the continuous Dice coeffi cient [15] is also given. 

The data from Table 1 testify that the presented Segmath 
software compares favorably.

Measuring the performance of segmentation software 
when a ground truth (a golden standard) is not available, in 
this study as well as in others [30], for comparison, asks for an 
alternative approach [32]. The automated software detection 
was compared to an artifi cial ground truth generated by 
repeatedly and at many different times examining the CTA’s. 
The examiner indeed reviewed the CTA’s thoroughly at least 
fi ve times with always a day in between, to acquire a good 
near-perfect cumulative interpretation of the series, being 
considered as the artifi cial ground truth.

The artifi cial ground truth can then be considered the 
“raters” and the segmentation “the other rater” according 
to Williams [33]. An agreement of more than 95% is good, 
considering that the segmentation added more than 4% of 
recognition on top of that.

Knowing that around 20% of large vessel occlusions are 
missed on initial CTA examination [5] and that the average 
“error rate” among radiologists is around 30% [34], any help 
should be warmly welcomed. Segmentation of the intracranial 
vessels will facilitate workfl ows [35] of suspected stroke 
patients, may improve the accuracy in interpreting CTA, 
and eventually improve stroke outcomes [5]. Moreover, the 
detection and correct interpretation of congenital variations 
of the anatomy of the circle of Willis [36] is possible. The 
distinction between an occluded vessel and an embryologically 
absent or hypoplastic artery must be made with care; in some 
circumstances, this might be impossible. This feat should be 
suggested in the differential diagnosis when applicable.

Conclusion

A new segmentation software Segmath is presented and 
evaluated. Good statistical results are obtained. Considering 
the diffi culties in fi rst-line CTA evaluation, this software 
will add a supplementary tool to the diagnostic armament. 
Careful interpretation of the segmented volume is mandatory 
to distinguish between occluded and congenitally absent or 
hypoplastic vessels.

Remark

A trial version of the software can be downloaded from the 
Segmath dedicated website, www.segmath.eu.
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