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Introduction

The experiment is the basis of fundamental and applied 
research. Experimental results are usually presented in the form 
of tables and graphs. However, it is very important to be able 
to represent them in the form of a Multifactor Computational 
Model (MCM) of experimental data, which would contain both 
explicit and hidden patterns in the data and generalize the 
relationship between the experimental parameters and the 
measured experimental characteristics of an object. 

Neural networks. Theoretical background

Neural Networks (NN) are the best tool for creating MCMs of 
experimental data. NN application is based on the Kolmogorov-
Arnold theorem [1-3] and its special cases considered by Hecht-
Nielsen [4]. In accordance with [1-3], any continuous function 
of several arguments can be represented as a superposition of 
functions of one argument and their summation. In [4] it is 
depicted that any continuous function of several arguments 
can be approximated by means of a suffi ciently large NN.

From a computational point of view, NN is a structure that 

includes itself a certain number of processing elements that 
execute a fi xed set of mathematical functions. This processing 
element is called an artifi cial neuron (AN). It consists of an 
input vector (Xi), synapses, a summation, a nonlinear transfer 
function and an output signal value (Figure 1) [5-7].

AN executes the following operations: 
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Figure 1: A scheme of an elementary processor (AN).
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The task of synapses is to multiply the input vector 
components Xi by a number characterizing the synapse strength 
(it is called synaptic weight Wi). These values obtained are 
summed and the sum is fed to the transfer function Y whose 
role is played by a monotonous function of one argument 
(usually sigmoid function f(S)). Thus, AN maps the vector Xi to 
a scalar value Y.

The number of “neurons” and the scheme of connection 
of them with each other can vary. NN can be presented often 
as “neurons” formed in layers. The “neurons” in a layer are 
not connected with each other, but they are connected with 
neurons of the previous and next layers by the principle “each 
with each.” The simplest kind of NN is feed-forward NN, 
whose ANs are grouped into layers – Figure 2. [5]

The NN in Figure 2 consists of one input nodes layer (5 
input nodes), one hidden layer (5 AN), and one output layer (3 
AN). Input nodes serve just as signal sources while all the other 
AN perform the computations described above.

This computational structure can approximate 
dependencies between input variables and target (output) 
variables (functions) of an object after training on a set of 
experimental data. 

The essence of training is selecting the correct synaptic 
weights. 

In the process of training, the weights of all synapses are 
determined from the requirement that NN should map all 
known input vectors to the known corresponding values of the 
target variables with minimum error.

This process is organized as follows. The initial synaptic 
weights are set using a random number generator. Then, a 
random input vector of real data is selected and fed to the NN. 
The NN calculates an output value, it is compared with the 
expected output value and the respective error is calculated. 
Using the “error backpropagation” algorithm based on the 
classic gradient descent method [8-10], synaptic weights are 
changed by certain values. After that, a new input vector of 
real data is randomly selected and the whole weight update 
procedure is repeated. The procedure is repeated until an 

acceptable difference between the values computed by NN and 
the real values of the target variable is reached. 

The number of training cycles can be more than 500-1000. 

The resulting NN is able to true to map any input vector 
close to the vectors used during training into the respective 
value of the target variable i.e. to approximate the dependence 
of a target variable on input factors.

Applications of neural networks. Rules, tips, examples

The organization of real data to be used for NN training is 
very important. 

The data for NN training (consisting of input variable 
value vectors and output values corresponding to them) can be 
formed by means of various techniques. They can contain data 
measured in real experiments or data obtained from numerical 
simulations; they can contain data of both types when these 
data can complement each other. 

The data must be cleared, that is, contradictions, duplicates, 
and anomalous values must be excluded. 

The data should be evenly distributed over the area of the 
input vector space, it is necessary to avoid large differences in 
data density in different parts of this area.

The data should be supplemented with metadata containing 
additional information about the object, for example, physical 
or chemical constants characterizing the object under study, 
the parameters of the technology for creating the object, etc. 
[11-13]. 

The use of metadata as additional data not only increases 
the accuracy of the NN model but also allows a deeper 
understanding of the physicochemical nature of the objects of 
research and the fi ne details of the mechanism of the processes 
under study. 

Another signifi cant circumstance is the proper choice of 
NN structure for which certain theoretical and empirical rules 
exist. 

For example, one of the general rules (confi rmed by our 
experience [5,7,11-13]) is that number of synapses should be 3 - 
5 times less than the number of input vectors (examples) used 
in training. The use of NN with a greater number of synapses 
may lead to the so call over-fi tting. 

The loss of the ability to generalize means that the NN 
remembers training examples well and accurately reproduces 
the target variables for the training input vectors, but gives 
erroneous values of the target variables for the input vectors 
that we did not use in training.

To fi nd out if the NN has the ability to generalize the 
dependencies contained in the data, the following approach 
is used. In the process of training, the input vectors (a set of 
examples) are divided into two groups. A large group is used 
for training, and a smaller group is used only to check the 

Figure 2: A scheme of NN that consists of one input layer, one “hidden” layer, and 
one output layer.
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NN prediction accuracy. If the NN accuracy in both groups is 
approximately the same, the NN is not retrained and has the 
ability to identify and generalize the dependencies of existing 
data.

One more rule: it has been empirically established that it is 
better to use three separate NN for each of the three “outputs” 
than one NN for all “outputs” (Figure 2).

The general principle for NN structure selection is as follows. 
For the majority of tasks, 2 hidden NN layers are suffi cient 
to obtain an acceptable error level. Therefore, using NN with 
more than 2 hidden layers can hardly make sense in many 
cases. Moreover, the accuracy of networks with a single hidden 
layer (Figure 2) is often quite good for problems of physics and 
natural science where dependencies are deterministic. 

The fi nal choice of the optimal NN structure for each 
research task is carried out empirically - by checking the 
exactness of different NN (for example, with a different number 
of AN in the hidden layer). 

It should be noted here that all questions of the methodology 
of NN used for approximating experimental data have been 
well worked out both from a theoretical and practical point 
of view at present. There exist a number of academic (free) 
and professional software packages which support all steps of 
data pre-processing, NN training, model results visualization, 
model quality evaluation and validation as well as make 
modeling experimental data simple and convenient.

Therefore, at present, it is possible to put forward the motto 
that experimental work cannot be considered complete until 
the MCM of experimental data has been created. 

We believe that an autonomous executable module of 
the NN model created by the authors of the article should 
be a mandatory supplement to any scientifi c article. This is 
explained as follows. A correctly created NN model is, fi rst of 
all, the most complete form of presentation of experimental 
results, since the NN model contains the relationships between 
all the variables of the experiment.

This will allow any reader of the article, having received 
the autonomous executable module, independently examine in 
detail all the regularities contained in the NN model, visualize 
in the form of graphs those regularities that the authors of the 
article could not cite in the article due to limitations on the 
volume of the article.

An additional advantage of the autonomous executable 
module of the NN model is that, with its help, the reader of the 
article can conduct “virtual experiments” [14-17], setting such 
combinations of factor values that were not investigated in the 
published article.

The virtual experiments can also be carried out to 
extrapolate dependencies revealed by the NN model (that is, to 
solve forecasting problems).

The virtual experiments can also be carried out to execute 
unique experiments for such combinations of factor values that 
cannot be organized or are diffi cult to organize.

In addition to the above, one more, very interesting, the 
case should be noted when the use of NN is justifi ed. Our 
experience shows that the Root-Mean-Square (RMS) error 
of the NN model is always less than the RMS error of the 
experimental data used to create the NN model. This allows the 
NN model to be used as a means of checking the quality of the 
experiment as a whole! Moreover, both from the point of view 
of the measurement error of the variables of the experiment 
and from the point of view of the correctness of the experiment, 
that is, the completeness of taking into account all the factors 
affecting the objective function of the experiment.

In cases where the RMS error of the NN model is too 
large (for example, when the RMS error of the NN model is 
more than 10-3), it is necessary to improve the accuracy of 
the experimental variables measurement and (or) change the 
formulation of the experimental problem, trying to take into 
account additional factors affecting the objective function of 
the experiment.

A series of more specifi c rules and various examples of real 
research results on the combustion and detonation of high-
energy materials are presented in the easily accessible works 
by the authors [13-17].

Conclusion

The use of neural networks for approximating experimental 
data is a well-established methodology with both theoretical 
and practical foundations. The quality of the data used for 
training is crucial, and it should be cleared of contradictions, 
duplicates and anomalous values. Metadata containing 
additional information about the object under study should 
also be included to increase the accuracy of the model and allow 
a deeper understanding of the processes involved. The choice 
of the optimal neural network structure should be carried out 
empirically, and certain rules should be followed, such as using 
three separate neural networks for each output and limiting 
the number of hidden layers to two. With the availability of 
academic and professional software packages, creating a model 
for experimental data has become simple and convenient, and 
it can be argued that experimental work cannot be considered 
complete until a neural network model has been created.
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