Visual experience recognition using adaptive support vector machine
Main Article Content
Abstract
Video has more information than the isolated images. Processing, analyzing and understanding of contents present in videos are becoming very important. Consumer videos are generally captured by amateurs using handheld cameras of events and it contains considerable camera motion, occlusion, cluttered background, and large intraclass variations within the same type of events, making their visual cues highly variable and less discriminant. So visual event recognition is an extremely challenging task in computer vision. A visual event recognition framework for consumer videos is framed by leveraging a large amount of loosely labeled web videos. The videos are divided into training and testing sets manually. A simple method called the Aligned Space-Time Pyramid Matching method was proposed to effectively measure the distances between two video clips from different domains. Each video is divided into space-time volumes over multiple levels. A new transfer learning method is referred to as Adaptive Multiple Kernel Learning fuse the information from multiple pyramid levels, features, and copes with the considerable variation in feature distributions between videos from two domains web video domain and consumer video domain.With the help of MATLAB Simulink videos are divided and compared with web domain videos. The inputs are taken from the Kodak data set and the results are given in the form of MATLAB simulation.
Downloads
Article Details
Copyright (c) 2021 Santhoshkumar SP, et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.
We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.
Peertechz accomplice with- [CC BY 4.0]
Explanation
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:
License Name |
Permission to read and download |
Permission to display in a repository |
Permission to translate |
Commercial uses of manuscript |
CC BY 4.0 |
Yes |
Yes |
Yes |
Yes |
The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.
Hu Y, Cao L, Lv F, Yan S, Gong Y, et al. (2009) Action Detection in Complex Scenes with Spatial and Temporal Ambiguities. Proc 12th IEEE IntConf. Computer Vision 128-135. Link: https://bit.ly/3DdjGa7
Lazebnik S, Schmid C, Ponce J (2006) Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. Proc IEEE Conf Computer Vision and Pattern Recognition 2169-2178. Link: https://bit.ly/3dbAvI7
Duan L, Tsang IW, Xu D, Maybank SJ (2009) Domain Transfer SVM for Video Concept Detection. Proc IEEE Int Conf Computer Vision and Pattern Recognition. Link: https://bit.ly/3G3JLKM
Duan L, Xu D, Tsang IW, Luo J (2010) Visual Event Recognition in Videos by Learning from Web Data. Proc IEEE Int Conf Computer Vision and Pattern Recognition. Link: https://bit.ly/3rBnRdE
Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2005) Actions as Space-Time Shapes. Proc 10th IEEE Int Conf Computer Vision 29: 1395-1402. Link: https://bit.ly/3I9j2hI
Brand M, Oliver N, Pentland A(1997) Coupled Hidden Markov Models for Complex Action Recognition. Proc IEEE Conf Computer Vision and Pattern Recognition 994-999. Link: https://bit.ly/3dhGo6p
Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Scho¨lkopf B, et al. (2006) Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy. Bioinformatics 22: e49- e57. Link: https://bit.ly/3dru6ZD
Blitzer J, McDonald R, Pereira F(2006) Domain Adaptation with Structural Correspondence Learning. Proc Conf Empirical Methods in Natural Language 120-128. Link: https://bit.ly/3G801dC
Chang SF, Ellis D, Jiang W, Lee K, Yanagawa A, et al. (2007) Large-Scale Multimodal Semantic Concept Detection for Consumer Video. Proc ACM Int’l Workshop Multimedia Information Retrieval 255-264. Link: https://bit.ly/31gocYh
Hays J, Efros AA (2007) Scene Completion Using Millions of Photographs.ACM Trans Graphics 26. Link: https://bit.ly/31l0CtQ
Daume III H(2007) Frustratingly Easy Domain Adaptation. Proc Ann Meeting Assoc for Computational Linguistics 256-263. Link: https://bit.ly/3G4Cevc
Ke Y, Sukthankar R, Hebert M(2005) Efficient Visual Event Detection Using Volumetric Features. Proc 10th IEEE Int Conf Computer Vision 1: 166-173. Link: https://bit.ly/3G82Ifq
Loui AC, Luo J, Chang SF, Ellis D, Jiang W, et al. (2007) Kodak’s Consumer Video Benchmark Data Set: Concept Definition and Annotation. Proc Int Workshop Multimedia Information Retrieval 245-254. Link: https://bit.ly/3EkORBS
Jensen PA, Bard JF (2003) Operations Research Models and Methods. John Wiley and Sons 700. Link: https://bit.ly/3rtPipO
Kwok JT , Tsang IW(2003) Learning with Idealized Kernels. Proc Int’l Conf Machine Learning 400-407. Link: https://bit.ly/3rt27Rt
Chang CC, Lin CJ (2001) LIBSVM: A Library for Support Vector Machines. Link: https://bit.ly/31kbEz6
Laptev I, Lindeberg T (2003) Space-Time Interest Points. Proc IEEE Int’l Conf Computer Vision 432-439. Link: https://bit.ly/3d9mHO7
Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI (2004) Learning the Kernel Matrix with Semidefinite Programming. J Machine Learning Research 5: 27-72. Link: https://bit.ly/3dac5yu
Dolla P, Rabaud V, Cottrell G, Belongie S (2005) Behavior Recognition via Sparse Spatio-Temporal Features. Proc IEEE Int Workshop Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 65-72. Link: https://bit.ly/3oel3RT
Grauman K, Darrell T (2005) The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features. Proc 10th IEEE Int’l Conf Computer Vision 1458-1465. Link: https://bit.ly/3DgGAO6
Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning Realistic Human Actions from Movies. Proc IEEE Conf Computer Vision and Pattern Recognition 1-8. Link: https://bit.ly/3xKUhDD
Ikizler-Cinbis N, Cinbis RG, Sclaroff S (2009) Learning Actions from the Web. Proc 12th IEEE Int’l Conf Computer Vision 995-1002.