OG-SLAM: A real-time and high-accurate monocular visual SLAM framework

Main Article Content

Boyu Kuang*
Yuheng Chen
Zeeshan A Rana

Abstract

The challenge of improving the accuracy of monocular Simultaneous Localization and Mapping (SLAM) is considered, which widely appears in computer vision, autonomous robotics, and remote sensing. A new framework (ORB-GMS-SLAM (or OG-SLAM)) is proposed, which introduces the region-based motion smoothness into a typical Visual SLAM (V-SLAM) system. The region-based motion smoothness is implemented by integrating the Oriented Fast and Rotated Brief (ORB) features and the Grid-based Motion Statistics (GMS) algorithm into the feature matching process. The OG-SLAM significantly reduces the absolute trajectory error (ATE) on the key-frame trajectory estimation without compromising the real-time performance. This study compares the proposed OG-SLAM to an advanced V-SLAM system (ORB-SLAM2). The results indicate the highest accuracy improvement of almost 75% on a typical RGB-D SLAM benchmark. Compared with other ORB-SLAM2 settings (1800 key points), the OG-SLAM improves the accuracy by around 20% without losing performance in real-time. The OG-SLAM framework has a significant advantage over the ORB-SLAM2 system in that it is more robust for rotation, loop-free, and long ground-truth length scenarios. Furthermore, as far as the authors are aware, this framework is the first attempt to integrate the GMS algorithm into the V-SLAM.

Downloads

Download data is not yet available.

Article Details

Kuang, B., Chen, Y., & Rana, Z. A. (2022). OG-SLAM: A real-time and high-accurate monocular visual SLAM framework. Trends in Computer Science and Information Technology, 7(2), 047–054. https://doi.org/10.17352/tcsit.000050
Research Articles

Copyright (c) 2022 Kuang B.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Saputra MRU, Markham A, Trigoni N. Visual SLAM and Structure from Motion in Dynamic Environments. ACM Comput Surv. 2018; 51:1–36.

Geromichalos D, Azkarate M, Tsardoulias E, Gerdes L, Petrou L, Perez Del Pulgar C. SLAM for autonomous planetary rovers with global localization. J F Robot. 2020; 37: 830–847.

Li G, Geng Y, Zhang W. Autonomous planetary rover navigation via active SLAM. Aircr Eng Aerosp Technol. 91: 60–68.

Francis SLX, Anavatti SG, Garratt M, Shim H. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics. Int J Adv Robot Syst. 12: 156.

Younes G, Asmar D, Shammas E, Zelek J. Keyframe-based monocular SLAM: design, survey, and future directions. Rob Auton Syst. 98: 67-88.

Yu F, Shang J, Hu Y, Milford M. NeuroSLAM: a brain-inspired SLAM system for 3D environments. Biol Cybern. 113: 5-6. 515-545,

Nüchter A, Lingemann K, Hertzberg J, Surmann H. 6D SLAM - 3D mapping outdoor environments. J F Robot. 2007; 24: 699-722.

Kuang B, Rana Z, Zhao Y. A Novel Aircraft Wing Inspection Framework based on Multiple View Geometry and Convolutional Neural Network. Aerosp Eur Conf 2020.

Hewitt RA. The Katwijk beach planetary rover dataset. Int J Rob Res. 37: 3-12, 2018.

Furgale P, Carle P, Enright J, Barfoot TD. The Devon Island rover navigation dataset. Int J Rob Res. 2012; 31: 707–713.

Kuang B, Rana ZA, Zhao Y. Sky and Ground Segmentation in the Navigation Visions of the Planetary Rovers. Sensors (Basel). 2021 Oct 21;21(21):6996. doi: 10.3390/s21216996. PMID: 34770302; PMCID: PMC8588092.

Compagnin A. Autoport project: A docking station for planetary exploration drones. AIAA SciTech Forum - 55th AIAA Aerosp Sci Meet. 2017.

Dubois R, Eudes A, Fremont V. AirMuseum: a heterogeneous multi-robot dataset for stereo-visual and inertial Simultaneous Localization and Mapping. IEEE Int Conf Multisens Fusion Integr Intell Syst 2020; 2020: 166-172.

Chiodini S, Torresin L, Pertile M, Debei S. Evaluation of 3D CNN Semantic Mapping for Rover Navigation. 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). 2020; 32–36.

Opower H. Multiple view geometry in computer vision. Opt. Lasers Eng. 37;1: 2002; 85–86.

Williams B, Cummins M, Neira J, Newman P, Reid I,Tardós J. A comparison of loop closing techniques in monocular SLAM. Rob Auton Syst 57; 12: 2009; 1188–1197.

Polvi J, Taketomi T, Yamamoto G, Dey A, Sandor C, Kato H. SlidAR: A 3D positioning method for SLAM-based handheld augmented reality Comput Graph 2016; 55: 33-43.

Chen SY. Kalman Filter for Robot Vision: A Survey. IEEE Trans Ind Electron 59: 4409-4420.

Castellanos JA, Neira J, Tardós JD. Limits to the consistency of EKF-based SLAM. IFAC Proc 37; 8: 2004; 716–721.

Triggs B, McLauchlan PF, R I. Hartley, Fitzgibbon AW Bundle Adjustment — A Modern Synthesis. 2000; 298–372.

Strasdat H, Montiel JMM, Davison AJ. Real-time monocular SLAM: Why filter? In 2010 IEEE International Conference on Robotics and Automation 2010; 2657–2664.

Cui H, Shen S, Gao W, Wang Z. Progressive Large-Scale Structure-from-Motion with Orthogonal MSTs. In 2018 International Conference on 3D Vision (3DV) 2018; 79–88.

Wang T, Lv G, Wang S, Li H, Lu B. SIFT Based Monocular SLAM with GPU Accelerated. In Lecture Notes of the Institute for Computer Sciences. Social-Informatics and Telecommunications Engineering, LNICST 237 LNICST 2018; 13–22.

Bian J, Lin W. GMS : Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence 4181–4190.

Nie S, Jiang Z, Zhang H, Wei Q, Image matching for space objects based on grid-based motion statistics. 875 Springer Singapore 2018.

Zhang X, Xie Z. Reconstructing 3D Scenes from UAV Images Using a Structure-from-Motion Pipeline. In 2018 26th International Conference on Geoinformatics. 2018; 2018:1–6.

Yan K, Han M. Aerial Image Stitching Algorithm Based on Improved GMS. In 2018 Eighth International Conference on Information Science and Technology (ICIST) 2018; 351–357.

Nobre F, Kasper M, Heckman C. Drift-correcting self-calibration for visual-inertial SLAM. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017; 6525–6532.

Mur-Artal R, Tardos JD. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans Robot 33; 5: 2017; 1255–1262.

Shiozaki T, Dissanayake G. Eliminating Scale Drift in Monocular SLAM Using Depth From Defocus. IEEE Robot. Autom. Lett 3; 1:2018; 581–587.

Muja M, Lowe DG. Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP 2009 - Proc. 4th Int. Conf. Comput. Vis. Theory Appl., 1:2009; 331–340.

Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. In 2011 International Conference on Computer Vision. 2011; 2564–2571.

Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection. 2006; 430–443.

Harris C, Stephens M. A Combined Corner and Edge Detector. in Procedings of the Alvey Vision Conference. 1988;1988: 69; 23.1-23.6.

Kirkwood JR, Kirkwood BH. Elementary Linear Algebra. Chapman and Hall/CRC, 2017.

Ourselin S, Roche A, Subsol G, Pennec X, Ayache N. Reconstructing a 3D structure from serial histological sections. Image Vis Comput 19; 1–2: 2001; 25–31.

Beevers KR, Huang WH. SLAM with sparse sensing. In Proceedings 2006 IEEE International Conference on Robotics and Automation. 2006. ICRA 2006; 2006: 2006; 2285–2290.

Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012; 573–580.

Mur-Artal R, Montiel JM M, Tardos JD. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot 31; 5: 2015; 1147–1163.

Fossum ER. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans Electron Devices 44;10: 1997; 1689–1698.